These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39265084)

  • 1. Label-Free Multiple Reaction Monitoring-Mass Spectrometry for Quantifying Phosphopeptides from Extracellular Vesicles.
    Wei D; Sun J; Luo Z; Zhang H; Zhang G; Liu Y; Cai Y; Gu Z; Xie Z; Zhang Y
    Anal Chem; 2024 Sep; ():. PubMed ID: 39265084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation.
    Sun J; Li Q; Ding Y; Wei D; Hadisurya M; Luo Z; Gu Z; Chen B; Tao WA
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202305668. PubMed ID: 37216424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles.
    Andaluz Aguilar H; Iliuk AB; Chen IH; Tao WA
    Nat Protoc; 2020 Jan; 15(1):161-180. PubMed ID: 31863077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glass Fiber-Supported Hybrid Monolithic Spin Tip for Enrichment of Phosphopeptides from Urinary Extracellular Vesicles.
    Zhang H; Deng Y; Liu X; Sun J; Ma L; Ding Y; Zhan Z; Zhang H; Yang Y; Gu Y; Iliuk AB; Yang C; Tao WA
    Anal Chem; 2020 Nov; 92(21):14790-14797. PubMed ID: 33074658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Extracellular Vesicle and Contaminant Markers in Blood Derivatives Using Multiple Reaction Monitoring.
    Newman LA; Useckaite Z; Wu T; Sorich MJ; Rowland A
    Methods Mol Biol; 2023; 2628():301-320. PubMed ID: 36781794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of technical and clinical utility of a bead-based flow cytometry platform for multiparametric phenotyping of CNS-derived extracellular vesicles.
    Brahmer A; Geiß C; Lygeraki A; Neuberger E; Tzaridis T; Nguyen TT; Luessi F; Régnier-Vigouroux A; Hartmann G; Simon P; Endres K; Bittner S; Reiners KS; Krämer-Albers EM
    Cell Commun Signal; 2023 Oct; 21(1):276. PubMed ID: 37803478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins.
    Gao L; Tao J; Qi L; Jiang X; Shi H; Liu Y; Di B; Wang Y; Yan F
    Anal Chim Acta; 2022 Feb; 1195():339430. PubMed ID: 35090649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streamlined microfluidic analysis of phosphopeptides using stable isotope-labeled synthetic peptides and MRM-MS detection.
    Deng J; Ikenishi F; Smith N; Lazar IM
    Electrophoresis; 2018 Dec; 39(24):3171-3184. PubMed ID: 30216485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways.
    Domanski D; Murphy LC; Borchers CH
    Anal Chem; 2010 Jul; 82(13):5610-20. PubMed ID: 20524616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Mass Spectrometry for Quantification of Receptor Tyrosine Kinase Signaling.
    Whiteaker JR; Zhao L; Kennedy JJ; Ivey RG; Paulovich AG
    Methods Mol Biol; 2024; 2823():253-267. PubMed ID: 39052225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC).
    Xue L; Wang P; Wang L; Renzi E; Radivojac P; Tang H; Arnold R; Zhu JK; Tao WA
    Mol Cell Proteomics; 2013 Aug; 12(8):2354-69. PubMed ID: 23660473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes.
    Puhka M; Takatalo M; Nordberg ME; Valkonen S; Nandania J; Aatonen M; Yliperttula M; Laitinen S; Velagapudi V; Mirtti T; Kallioniemi O; Rannikko A; Siljander PR; Af Hällström TM
    Theranostics; 2017; 7(16):3824-3841. PubMed ID: 29109780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free Quantitative Phosphoproteomics for Algae.
    Ford MM; Lawrence SR; Werth EG; McConnell EW; Hicks LM
    Methods Mol Biol; 2020; 2139():197-211. PubMed ID: 32462588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation.
    Zhang H; Cai YH; Ding Y; Zhang G; Liu Y; Sun J; Yang Y; Zhan Z; Iliuk A; Gu Z; Gu Y; Tao WA
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer.
    Chen IH; Xue L; Hsu CC; Paez JS; Pan L; Andaluz H; Wendt MK; Iliuk AB; Zhu JK; Tao WA
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3175-3180. PubMed ID: 28270605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute and site-specific quantification of protein phosphorylation using integrated elemental and molecular mass spectrometry: its potential to assess phosphopeptide enrichment procedures.
    Navaza AP; Encinar JR; Carrascal M; Abian J; Sanz-Medel A
    Anal Chem; 2008 Mar; 80(5):1777-87. PubMed ID: 18247585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation and quantification among a target set of phosphopeptides in human plasma by multiple reaction monitoring and SWATH-MS2 data-independent acquisition.
    Zawadzka AM; Schilling B; Held JM; Sahu AK; Cusack MP; Drake PM; Fisher SJ; Gibson BW
    Electrophoresis; 2014 Dec; 35(24):3487-97. PubMed ID: 24853916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic analysis for evaluating affinity isolation of extracellular vesicles.
    Nguyen A; Wang T; Turko IV
    J Proteomics; 2021 Oct; 249():104359. PubMed ID: 34454076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-Independent Acquisition Phosphoproteomics of Urinary Extracellular Vesicles Enables Renal Cell Carcinoma Grade Differentiation.
    Hadisurya M; Lee ZC; Luo Z; Zhang G; Ding Y; Zhang H; Iliuk AB; Pili R; Boris RS; Tao WA
    Mol Cell Proteomics; 2023 May; 22(5):100536. PubMed ID: 36997065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.