These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 39265103)

  • 1. A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction.
    Zhuo C; Gao J; Li A; Liu X; Zhao Y
    J Chem Inf Model; 2024 Oct; 64(19):7386-7397. PubMed ID: 39265103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography.
    Gao J; Liu H; Zhuo C; Zeng C; Zhao Y
    J Chem Inf Model; 2024 Sep; 64(18):6979-6992. PubMed ID: 39230508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MultiModRLBP: A Deep Learning Approach for Multi-Modal RNA-Small Molecule Ligand Binding Sites Prediction.
    Wang J; Quan L; Jin Z; Wu H; Ma X; Wang X; Xie J; Pan D; Chen T; Wu T; Lyu Q
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4995-5006. PubMed ID: 38739505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How We Think about Targeting RNA with Small Molecules.
    Costales MG; Childs-Disney JL; Haniff HS; Disney MD
    J Med Chem; 2020 Sep; 63(17):8880-8900. PubMed ID: 32212706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AnnapuRNA: A scoring function for predicting RNA-small molecule binding poses.
    Stefaniak F; Bujnicki JM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008309. PubMed ID: 33524009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of RNA 3D structure prediction methods: towards enhanced modeling of RNA-ligand interactions.
    Nithin C; Kmiecik S; Błaszczyk R; Nowicka J; Tuszyńska I
    Nucleic Acids Res; 2024 Jul; 52(13):7465-7486. PubMed ID: 38917327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the Binding of Small Molecules to Proteins through Invariant Representation of the Molecular Structure.
    Beccaria R; Lazzeri A; Tiana G
    J Chem Inf Model; 2024 Sep; 64(17):6758-6767. PubMed ID: 39197011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multimodal Transformer Network for protein-small molecule interactions enhances predictions of kinase inhibition and enzyme-substrate relationships.
    Kroll A; Ranjan S; Lercher MJ
    PLoS Comput Biol; 2024 May; 20(5):e1012100. PubMed ID: 38768223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nearest neighbor algorithm based predictor for the prediction of enzyme-small molecule interaction.
    Hu LL; He ZS; Shi XH; Kong XY; Li HP; Lu WC
    Protein Pept Lett; 2012 Jan; 19(1):91-8. PubMed ID: 21919855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in RNA structure prediction: Advances and challenges.
    Zhang S; Li J; Chen SJ
    Biophys J; 2024 Sep; 123(17):2647-2657. PubMed ID: 38297836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA-Small Molecule Interactions.
    Umuhire Juru A; Patwardhan NN; Hargrove AE
    ACS Chem Biol; 2019 May; 14(5):824-838. PubMed ID: 31042354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA Structural Differentiation: Opportunities with Pattern Recognition.
    Eubanks CS; Hargrove AE
    Biochemistry; 2019 Jan; 58(4):199-213. PubMed ID: 30513196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR structures of small molecules bound to a model of a CUG RNA repeat expansion.
    Chen JL; Taghavi A; Frank AJ; Fountain MA; Choudhary S; Roy S; Childs-Disney JL; Disney MD
    Bioorg Med Chem Lett; 2024 Oct; 111():129888. PubMed ID: 39002937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA-Binding Scaffold.
    Donlic A; Morgan BS; Xu JL; Liu A; Roble C; Hargrove AE
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13242-13247. PubMed ID: 30134013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric deep learning of RNA structure.
    Townshend RJL; Eismann S; Watkins AM; Rangan R; Karelina M; Das R; Dror RO
    Science; 2021 Aug; 373(6558):1047-1051. PubMed ID: 34446608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies.
    Macari G; Toti D; Polticelli F
    J Comput Aided Mol Des; 2019 Oct; 33(10):887-903. PubMed ID: 31628659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting RNA structures in diseases with small molecules.
    Shao Y; Zhang QC
    Essays Biochem; 2020 Dec; 64(6):955-966. PubMed ID: 33078198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction method of pharmacokinetic parameters of small molecule drugs based on GCN network model.
    Yang Z; Wang Y; Du G; Zhan Y; Zhan W
    J Mol Model; 2024 Jul; 30(8):264. PubMed ID: 38995407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecule-RNA targeting: starting with the fundamentals.
    Hargrove AE
    Chem Commun (Camb); 2020 Nov; 56(94):14744-14756. PubMed ID: 33201954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.