These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39265495)
1. Assessing terrestrial water storage dynamics and multiple factors driving forces in China from 2005 to 2020. Ji R; Wang C; Cui A; Jia M; Liao S; Wang W; Chen N J Environ Manage; 2024 Nov; 370():122464. PubMed ID: 39265495 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Terrestrial Water Storage Changes and Major Driving Factors Analysis in Inner Mongolia, China. Guo Y; Gan F; Yan B; Bai J; Xing N; Zhuo Y Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560032 [TBL] [Abstract][Full Text] [Related]
3. Assessing long-term water storage dynamics in Afghanistan: An integrated approach using machine learning, hydrological models, and remote sensing. Azizi AH; Akhtar F; Tischbein B; Borgemeister C; Wang Q J Environ Manage; 2024 Nov; 370():122901. PubMed ID: 39437687 [TBL] [Abstract][Full Text] [Related]
4. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463 [TBL] [Abstract][Full Text] [Related]
5. Drought analysis of the Haihe river basin based on GRACE terrestrial water storage. Wang J; Jiang D; Huang Y; Wang H ScientificWorldJournal; 2014; 2014():578372. PubMed ID: 25202732 [TBL] [Abstract][Full Text] [Related]
6. Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network. Lai Y; Zhang B; Yao Y; Liu L; Yan X; He Y; Ou S Sci Total Environ; 2022 Jun; 823():153770. PubMed ID: 35151739 [TBL] [Abstract][Full Text] [Related]
7. Global groundwater droughts are more severe than they appear in hydrological models: An investigation through a Bayesian merging of GRACE and GRACE-FO data with a water balance model. Forootan E; Mehrnegar N; Schumacher M; Schiettekatte LAR; Jagdhuber T; Farzaneh S; van Dijk AIJM; Shamsudduha M; Shum CK Sci Total Environ; 2024 Feb; 912():169476. PubMed ID: 38145671 [TBL] [Abstract][Full Text] [Related]
8. Impacts of Human Activities and Climate Change on Water Storage Changes in Shandong Province, China. Deng L; Han Z; Pu W; Bao R; Wang Z; Wu Q; Qiao J Environ Sci Pollut Res Int; 2022 May; 29(23):35365-35381. PubMed ID: 35060057 [TBL] [Abstract][Full Text] [Related]
9. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California. Carlson G; Werth S; Shirzaei M J Geophys Res Solid Earth; 2022 Mar; 127(3):e2021JB023135. PubMed ID: 35866034 [TBL] [Abstract][Full Text] [Related]
10. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO. Fatolazadeh F; Goïta K Sci Total Environ; 2021 Jul; 779():146435. PubMed ID: 34030259 [TBL] [Abstract][Full Text] [Related]
11. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products. Anyah RO; Forootan E; Awange JL; Khaki M Sci Total Environ; 2018 Sep; 635():1405-1416. PubMed ID: 29710593 [TBL] [Abstract][Full Text] [Related]
12. Long-term trends in human-induced water storage changes for China detected from GRACE data. Hua S; Jing H; Qiu G; Kuang X; Andrews CB; Chen X; Zheng C J Environ Manage; 2024 Sep; 368():122253. PubMed ID: 39173301 [TBL] [Abstract][Full Text] [Related]
13. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins. He Q; Fok HS; Chen Q; Chun KP Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044 [TBL] [Abstract][Full Text] [Related]
14. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China. Sun W; Jin Y; Yu J; Wang G; Xue B; Zhao Y; Fu Y; Shrestha S Sci Total Environ; 2020 Jan; 698():134171. PubMed ID: 31514033 [TBL] [Abstract][Full Text] [Related]
15. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins. Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880 [TBL] [Abstract][Full Text] [Related]
16. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India. Satish Kumar K; Venkata Rathnam E; Sridhar V Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527 [TBL] [Abstract][Full Text] [Related]
17. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Yang P; Xia J; Zhan C; Qiao Y; Wang Y Sci Total Environ; 2017 Oct; 595():218-228. PubMed ID: 28384578 [TBL] [Abstract][Full Text] [Related]
18. Bridging Terrestrial Water Storage Anomaly During GRACE/GRACE-FO Gap Using SSA Method: A Case Study in China. Li W; Wang W; Zhang C; Wen H; Zhong Y; Zhu Y; Li Z Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31554328 [TBL] [Abstract][Full Text] [Related]
19. Understanding the global hydrological droughts of 2003-2016 and their relationships with teleconnections. Forootan E; Khaki M; Schumacher M; Wulfmeyer V; Mehrnegar N; van Dijk AIJM; Brocca L; Farzaneh S; Akinluyi F; Ramillien G; Shum CK; Awange J; Mostafaie A Sci Total Environ; 2019 Feb; 650(Pt 2):2587-2604. PubMed ID: 30293010 [TBL] [Abstract][Full Text] [Related]
20. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations. Khorrami B; Gündüz O Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]