These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 39266614)
1. A graph self-supervised residual learning framework for domain identification and data integration of spatial transcriptomics. Huang J; Fu X; Zhang Z; Xie Y; Liu S; Wang Y; Zhao Z; Peng Y Commun Biol; 2024 Sep; 7(1):1123. PubMed ID: 39266614 [TBL] [Abstract][Full Text] [Related]
2. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks. Shi X; Zhu J; Long Y; Liang C Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658 [TBL] [Abstract][Full Text] [Related]
3. Graspot: a graph attention network for spatial transcriptomics data integration with optimal transport. Gao Z; Cao K; Wan L Bioinformatics; 2024 Sep; 40(Suppl 2):ii137-ii145. PubMed ID: 39230711 [TBL] [Abstract][Full Text] [Related]
4. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Peng L; He X; Peng X; Li Z; Zhang L Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898 [TBL] [Abstract][Full Text] [Related]
5. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster. Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895 [TBL] [Abstract][Full Text] [Related]
6. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network. Si Z; Li H; Shang W; Zhao Y; Kong L; Long C; Zuo Y; Feng Z Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38811360 [TBL] [Abstract][Full Text] [Related]
7. SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics. Li J; Wang J; Lin Z Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38171928 [TBL] [Abstract][Full Text] [Related]
8. Graph attention automatic encoder based on contrastive learning for domain recognition of spatial transcriptomics. Wang T; Zhu H; Zhou Y; Ding W; Ding W; Han L; Zhang X Commun Biol; 2024 Oct; 7(1):1351. PubMed ID: 39424696 [TBL] [Abstract][Full Text] [Related]
9. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network. Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752 [TBL] [Abstract][Full Text] [Related]
10. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data. Zhang L; Liang S; Wan L Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701 [TBL] [Abstract][Full Text] [Related]
11. ST-SCSR: identifying spatial domains in spatial transcriptomics data via structure correlation and self-representation. Zhang M; Zhang W; Ma X Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39228303 [TBL] [Abstract][Full Text] [Related]
12. MVST: Identifying spatial domains of spatial transcriptomes from multiple views using multi-view graph convolutional networks. Duan H; Zhang Q; Cui F; Zou Q; Zhang Z PLoS Comput Biol; 2024 Sep; 20(9):e1012409. PubMed ID: 39235988 [TBL] [Abstract][Full Text] [Related]
13. Graph deep learning enabled spatial domains identification for spatial transcriptomics. Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761 [TBL] [Abstract][Full Text] [Related]
14. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics. Fang Z; Liu T; Zheng R; A J; Yin M; Li M Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544 [TBL] [Abstract][Full Text] [Related]
15. DeepST: identifying spatial domains in spatial transcriptomics by deep learning. Xu C; Jin X; Wei S; Wang P; Luo M; Xu Z; Yang W; Cai Y; Xiao L; Lin X; Liu H; Cheng R; Pang F; Chen R; Su X; Hu Y; Wang G; Jiang Q Nucleic Acids Res; 2022 Dec; 50(22):e131. PubMed ID: 36250636 [TBL] [Abstract][Full Text] [Related]
16. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data. Zhai Y; Chen L; Deng M Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389 [TBL] [Abstract][Full Text] [Related]
17. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics. Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253 [TBL] [Abstract][Full Text] [Related]
18. Accurate Identification of Spatial Domain by Incorporating Global Spatial Proximity and Local Expression Proximity. Yu Y; He Y; Xie Z Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927077 [TBL] [Abstract][Full Text] [Related]
19. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Hu J; Li X; Coleman K; Schroeder A; Ma N; Irwin DJ; Lee EB; Shinohara RT; Li M Nat Methods; 2021 Nov; 18(11):1342-1351. PubMed ID: 34711970 [TBL] [Abstract][Full Text] [Related]
20. Latent feature extraction with a prior-based self-attention framework for spatial transcriptomics. Li Z; Chen X; Zhang X; Jiang R; Chen S Genome Res; 2023 Oct; 33(10):1757-1773. PubMed ID: 37903634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]