These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3926771)

  • 1. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state.
    Carden MJ; Schlaepfer WW; Lee VM
    J Biol Chem; 1985 Aug; 260(17):9805-17. PubMed ID: 3926771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antibodies to epitopes on different regions of the 200 000 dalton neurofilament protein. Probes for the geometry of the filament.
    Liem RK; Chin SS; Moraru E; Wang E
    Exp Cell Res; 1985 Feb; 156(2):419-28. PubMed ID: 2578404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain structure of neurofilament subunits as revealed by monoclonal antibodies.
    Angeletti RH; Trojanowski JQ; Carden M; Schlaepfer WW; Lee VM
    J Cell Biochem; 1985; 27(2):181-7. PubMed ID: 2580851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit.
    Lee VM; Carden MJ; Trojanowski JQ
    J Neurosci; 1986 Mar; 6(3):850-8. PubMed ID: 2420949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An isoelectric variant of the 150,000-dalton neurofilament polypeptide. Evidence that phosphorylation state affects its association with the filament.
    Wong J; Hutchison SB; Liem RK
    J Biol Chem; 1984 Sep; 259(17):10867-74. PubMed ID: 6540776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal maturation in development--I. Characterization of monoclonal antibodies reacting with axon-specific neurofilament epitopes.
    Dahl D; Gardner EE; Crosby CJ
    Int J Dev Neurosci; 1987; 5(1):17-27. PubMed ID: 2459903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE; Nixon RA
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two proteolytically derived soluble polypeptides from the neurofilament triplet components NFM and NFH.
    Chin TK; Harding SE; Eagles PA
    Biochem J; 1989 Nov; 264(1):53-60. PubMed ID: 2557834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering of phosphorylated amino acid residues in neurofilament proteins as revealed by 31P NMR.
    Zimmerman UJ; Schlaepfer WW
    Biochemistry; 1986 Jun; 25(12):3533-6. PubMed ID: 3087415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain.
    Pant HC
    Biochem J; 1988 Dec; 256(2):665-8. PubMed ID: 2851997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lamprey neurofilaments combine in one subunit the features of each mammalian NF triplet protein but are highly phosphorylated only in large axons.
    Pleasure SJ; Selzer ME; Lee VM
    J Neurosci; 1989 Feb; 9(2):698-709. PubMed ID: 2493079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of neurofilament protein in cerebral ischemia.
    Ogata N; Yonekawa Y; Taki W; Kannagi R; Murachi T; Hamakubo T; Kikuchi H
    J Neurosurg; 1989 Jan; 70(1):103-7. PubMed ID: 2491885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation protects neurofilaments against proteolysis.
    Goldstein ME; Sternberger NH; Sternberger LA
    J Neuroimmunol; 1987 Mar; 14(2):149-60. PubMed ID: 3029175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identities, antigenic determinants, and topographic distributions of neurofilament proteins in the nervous systems of adult frogs and tadpoles of Xenopus laevis.
    Szaro BG; Gainer H
    J Comp Neurol; 1988 Jul; 273(3):344-58. PubMed ID: 2463277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteolytic digestion of ox neurofilaments with trypsin and alpha-chymotrypsin.
    Chin TK; Eagles PA; Maggs A
    Biochem J; 1983 Nov; 215(2):239-52. PubMed ID: 6418139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H).
    Goldstein ME; Sternberger LA; Sternberger NH
    J Neuroimmunol; 1987 Mar; 14(2):135-48. PubMed ID: 2434525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein.
    Heimann R; Shelanski ML; Liem RK
    J Biol Chem; 1985 Oct; 260(22):12160-6. PubMed ID: 3930490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypophosphorylated neurofilament subunits in the cytoskeletal and soluble fractions of cultured bovine adrenal chromaffin cells.
    Georges E; Trifaró JM; Mushynski WE
    Neuroscience; 1987 Aug; 22(2):753-63. PubMed ID: 3118238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immunological homology between two filamentous cross-linker phosphoproteins, connectin and cross-bridge region of neurofilament-H, is not affected by the phosphorylation state.
    Matsumura K; Shimizu T; Mannen T; Maruyama K
    J Biochem; 1989 Feb; 105(2):226-30. PubMed ID: 2722766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve.
    Goldstein ME; Cooper HS; Bruce J; Carden MJ; Lee VM; Schlaepfer WW
    J Neurosci; 1987 May; 7(5):1586-94. PubMed ID: 3106591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.