These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39267715)

  • 1. Comparison of estimation and prediction methods for a zero-inflated geometric INAR(1) process with random coefficients.
    Nasirzadeh R; Bakouch H
    J Appl Stat; 2024; 51(12):2457-2480. PubMed ID: 39267715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Medical Data by Flexible Integer-Valued AR(1) Process with Zero-and-One-Inflated Geometric Innovations.
    Mohammadi Z; Sajjadnia Z; Sharafi M; Mamode Khan N
    Iran J Sci Technol Trans A Sci; 2022; 46(3):891-906. PubMed ID: 35645547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The balanced discrete triplet Lindley model and its INAR(1) extension: properties and COVID-19 applications.
    Shirozhan M; Mamode Khan NA; Kokonendji CC
    Int J Biostat; 2023 Nov; 19(2):489-516. PubMed ID: 36420542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The balanced discrete Burr-Hatke model and mixing INAR(1) process: properties, estimation, forecasting and COVID-19 applications.
    Baladezaei SMH; Deiri E; Jamkhaneh EB
    J Appl Stat; 2024; 51(7):1227-1250. PubMed ID: 38835822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros.
    Kassahun W; Neyens T; Molenberghs G; Faes C; Verbeke G
    Stat Med; 2014 Nov; 33(25):4402-19. PubMed ID: 24957791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Poisson integer-valued autoregressive processes with structural changes.
    Zhang C; Wang D; Yang K; Li H; Wang X
    J Appl Stat; 2022; 49(11):2717-2739. PubMed ID: 35909669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first-order binomial-mixed Poisson integer-valued autoregressive model with serially dependent innovations.
    Chen Z; Dassios A; Tzougas G
    J Appl Stat; 2023; 50(2):352-369. PubMed ID: 36698548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New First-Order Integer-Valued Autoregressive Model with Bell Innovations.
    Huang J; Zhu F
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34199717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Marginalized Zero-Inflated Negative Binomial Model for Spatial Data: Modeling COVID-19 Deaths in Georgia.
    Mutiso F; Pearce JL; Benjamin-Neelon SE; Mueller NT; Li H; Neelon B
    Biom J; 2024 Jul; 66(5):e202300182. PubMed ID: 39001709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-inflated Bell regression models for count data.
    Lemonte AJ; Moreno-Arenas G; Castellares F
    J Appl Stat; 2020; 47(2):265-286. PubMed ID: 35706517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana.
    Tawiah K; Iddrisu WA; Asampana Asosega K
    J Environ Public Health; 2021; 2021():5543977. PubMed ID: 34012470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and monitoring of INAR(1) process with geometrically inflated Poisson innovations.
    Li C; Zhang H; Wang D
    J Appl Stat; 2022; 49(7):1821-1847. PubMed ID: 35707552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-inflated spatio-temporal models for disease mapping.
    Torabi M
    Biom J; 2017 May; 59(3):430-444. PubMed ID: 28187237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling digital camera monitoring count data with intermittent zeros for short-term prediction.
    Afrifa-Yamoah E; Mueller UA
    Heliyon; 2022 Jan; 8(1):e08774. PubMed ID: 35106388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copula-based Markov zero-inflated count time series models with application.
    Alqawba M; Diawara N
    J Appl Stat; 2021; 48(5):786-803. PubMed ID: 35707445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some developments on seasonal INAR processes with application to influenza data.
    Almuhayfith FE; Okereke EW; Awale M; Bakouch HS; Alqifari HN
    Sci Rep; 2023 Dec; 13(1):22037. PubMed ID: 38086947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untangle the Structural and Random Zeros in Statistical Modelings.
    Tang W; He H; Wang WJ; Chen DG
    J Appl Stat; 2018; 45(9):1714-1733. PubMed ID: 30906098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A GEE-type approach to untangle structural and random zeros in predictors.
    Ye P; Tang W; He J; He H
    Stat Methods Med Res; 2019 Dec; 28(12):3683-3696. PubMed ID: 30472921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical modelling of COVID-19 and drug data via an INAR(1) process with a recent thinning operator and cosine Poisson innovations.
    Mohammadi Z; Bakouch HS; Sharafi M
    Int J Biostat; 2023 Nov; 19(2):473-488. PubMed ID: 36302373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.