These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39268554)
1. Population asynchrony within and between trophic levels have contrasting effects on consumer community stability in a subtropical lake. Rao X; Chen J; Wang S; Su H; Rao Q; Xia W; Liu J; Fan X; Deng X; Shen H; Xie P J Anim Ecol; 2024 Oct; 93(10):1593-1605. PubMed ID: 39268554 [TBL] [Abstract][Full Text] [Related]
2. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
3. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities. Vad CF; Hanny-Endrédi A; Kratina P; Abonyi A; Mironova E; Murray DS; Samchyshyna L; Tsakalakis I; Smeti E; Spatharis S; Tan H; Preiler C; Petrusek A; Bengtsson MM; Ptacnik R Glob Chang Biol; 2023 Jun; 29(11):3054-3071. PubMed ID: 36946870 [TBL] [Abstract][Full Text] [Related]
4. Food web de-synchronization in England's largest lake: an assessment based on multiple phenological metrics. Thackeray SJ; Henrys PA; Feuchtmayr H; Jones ID; Maberly SC; Winfield IJ Glob Chang Biol; 2013 Dec; 19(12):3568-80. PubMed ID: 23868351 [TBL] [Abstract][Full Text] [Related]
5. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes. Zhang Y; Feng K; Song D; Wang Q; Ye S; Liu J; Kainz MJ Sci Total Environ; 2024 Feb; 913():169562. PubMed ID: 38142998 [TBL] [Abstract][Full Text] [Related]
6. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342 [TBL] [Abstract][Full Text] [Related]
7. Trophic downgrading decreases species asynchrony and community stability regardless of climate warming. Rezende F; Antiqueira PAP; Petchey OL; Velho LFM; Rodrigues LC; Romero GQ Ecol Lett; 2021 Dec; 24(12):2660-2673. PubMed ID: 34537987 [TBL] [Abstract][Full Text] [Related]
8. Warming and trophic structure tightly control phytoplankton bloom amplitude, composition and succession. Trombetta T; Mostajir B; Courboulès J; Protopapa M; Mas S; Aberle N; Vidussi F PLoS One; 2024; 19(10):e0308505. PubMed ID: 39365779 [TBL] [Abstract][Full Text] [Related]
9. Species portfolio effects dominate seasonal zooplankton stabilization within a large temperate lake. O'Connor RF; McMeans BC; Rooney N; Guzzo MM; Young JD; McCann KS Ecology; 2023 Feb; 104(2):e3889. PubMed ID: 36208063 [TBL] [Abstract][Full Text] [Related]
10. Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Su H; Feng Y; Chen J; Chen J; Ma S; Fang J; Xie P Ecology; 2021 Jul; 102(7):e03370. PubMed ID: 33961286 [TBL] [Abstract][Full Text] [Related]
11. Re-oligotrophication and warming stabilize phytoplankton networks. Fu H; Cai G; Özkan K; Johansson LS; Søndergaard M; Lauridsen TL; Yuan G; Jeppesen E Water Res; 2024 Apr; 253():121325. PubMed ID: 38367379 [TBL] [Abstract][Full Text] [Related]
12. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Ye L; Chang CY; García-Comas C; Gong GC; Hsieh CH J Anim Ecol; 2013 Sep; 82(5):1052-61. PubMed ID: 23506226 [TBL] [Abstract][Full Text] [Related]
13. Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs. Hébert MP; Beisner BE; Rautio M; Fussmann GF Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810251 [TBL] [Abstract][Full Text] [Related]
14. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Durant JM; Molinero JC; Ottersen G; Reygondeau G; Stige LC; Langangen Ø Sci Rep; 2019 Oct; 9(1):15213. PubMed ID: 31645657 [TBL] [Abstract][Full Text] [Related]
15. Predator complementarity dampens variability of phytoplankton biomass in a diversity-stability trophic cascade. Rakowski CJ; Farrior CE; Manning SR; Leibold MA Ecology; 2021 Dec; 102(12):e03534. PubMed ID: 34496044 [TBL] [Abstract][Full Text] [Related]
16. Consistent trophic amplification of marine biomass declines under climate change. Kwiatkowski L; Aumont O; Bopp L Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401 [TBL] [Abstract][Full Text] [Related]
17. Shifting trophic control of fishery-ecosystem dynamics following biological invasions. Goto D; Dunlop ES; Young JD; Jackson DA Ecol Appl; 2020 Dec; 30(8):e02190. PubMed ID: 32506720 [TBL] [Abstract][Full Text] [Related]
18. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? de Senerpont Domis LN; Mooij WM; Hülsmann S; van Nes EH; Scheffer M Oecologia; 2007 Jan; 150(4):682-98. PubMed ID: 17024385 [TBL] [Abstract][Full Text] [Related]
19. How can top-down and bottom-up manipulation be used to mitigate eutrophication? Mesocosm experiment driven modeling zooplankton seasonal dynamic approach in the trophic cascade. Zhang C; Zhou Y; Špoljar M; Fressl J; Tomljanović T; Rama V; Kuczyńska-Kippen N Water Res; 2023 Sep; 243():120364. PubMed ID: 37473510 [TBL] [Abstract][Full Text] [Related]
20. Zooplankton-phytoplankton biomass and diversity relationships in the Great Lakes. Kovalenko KE; Reavie ED; Figary S; Rudstam LG; Watkins JM; Scofield A; Filstrup CT PLoS One; 2023; 18(10):e0292988. PubMed ID: 37883482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]