These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39268554)

  • 41. Ecosystem dynamics and hypoxia control in the East China Sea: A bottom-up and top-down perspective.
    Xu Z; Sun Q; Miao Y; Li H; Wang B; Jin H; Zhu Z; Chen J
    Sci Total Environ; 2024 Mar; 918():170729. PubMed ID: 38325445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Eutrophication decrease compositional dissimilarity in freshwater plankton communities.
    Li Y; Geng M; Yu J; Du Y; Xu M; Zhang W; Wang J; Su H; Wang R; Chen F
    Sci Total Environ; 2022 May; 821():153434. PubMed ID: 35090915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple diversity-stability mechanisms enhance population and community stability in aquatic food webs.
    Downing AL; Brown BL; Leibold MA
    Ecology; 2014 Jan; 95(1):173-84. PubMed ID: 24649657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.
    Domis LN; Van de Waal DB; Helmsing NR; Van Donk E; Mooij WM
    Ecology; 2014 Jun; 95(6):1485-95. PubMed ID: 25039214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution.
    Barnett A; Beisner BE
    Ecology; 2007 Jul; 88(7):1675-86. PubMed ID: 17645014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions.
    Cai G; Ge Y; Dong Z; Liao Y; Chen Y; Wu A; Li Y; Liu H; Yuan G; Deng J; Fu H; Jeppesen E
    Water Res; 2024 Sep; 261():122054. PubMed ID: 38986279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes.
    Kraemer BM; Mehner T; Adrian R
    Sci Rep; 2017 Sep; 7(1):10762. PubMed ID: 28883487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sources and fate of omega-3 polyunsaturated fatty acids in a highly eutrophic lake.
    Luo Y; Wang Y; Guo F; Kainz MJ; You J; Li F; Gao W; Shen X; Tao J; Zhang Y
    Sci Total Environ; 2024 Jul; 932():172879. PubMed ID: 38697529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local forcings affect lake zooplankton vulnerability and response to climate warming.
    Alric B; Jenny JP; Berthon V; Arnaud F; Pignol C; Reyss JL; Sabatier P; Perga ME
    Ecology; 2013 Dec; 94(12):2767-80. PubMed ID: 24597223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.
    Tao Y; Xue B; Lei G; Liu F; Wang Z
    Environ Pollut; 2017 Apr; 223():624-634. PubMed ID: 28173953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A freshwater predator hit twice by the effects of warming across trophic levels.
    Jonsson T; Setzer M
    Nat Commun; 2015 Jan; 6():5992. PubMed ID: 25586020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria.
    Jia J; Shi W; Chen Q; Lauridsen TL
    Harmful Algae; 2017 Apr; 64():63-73. PubMed ID: 28427573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Small-sized omnivorous fish induce stronger effects on food webs than warming and eutrophication in experimental shallow lakes.
    Pacheco JP; Aznarez C; Meerhoff M; Liu Y; Li W; Baattrup-Pedersen A; Yu C; Jeppesen E
    Sci Total Environ; 2021 Nov; 797():148998. PubMed ID: 34346382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental warming promotes CO
    Colina M; Meerhoff M; Cabrera-Lamanna L; Kosten S
    Sci Total Environ; 2024 Apr; 920():171029. PubMed ID: 38367721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes.
    Tao Y; Yu J; Liu X; Xue B; Wang S
    Water Res; 2018 Apr; 132():1-11. PubMed ID: 29304443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of climate change and oligotrophication on quality and quantity of lake primary production: A case study in Lake Biwa.
    Kazama T; Hayakawa K; Nagata T; Shimotori K; Imai A
    Sci Total Environ; 2024 Jun; 927():172266. PubMed ID: 38583615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Restoring gradual land-water transitions in a shallow lake improved phytoplankton quantity and quality with cascading effects on zooplankton production.
    Jin H; Van de Waal DB; van Leeuwen CHA; Lamers LPM; Declerck SAJ; Amorim AL; Bakker ES
    Water Res; 2023 May; 235():119915. PubMed ID: 36996752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes.
    Gerten D; Adrian R
    ScientificWorldJournal; 2002 Mar; 2():586-606. PubMed ID: 12805986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.
    Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ
    Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.