These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian. Cheng L; Gauss J J Chem Phys; 2011 Jun; 134(24):244112. PubMed ID: 21721617 [TBL] [Abstract][Full Text] [Related]
3. Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level. Cheng L; Stopkowicz S; Gauss J J Chem Phys; 2013 Dec; 139(21):214114. PubMed ID: 24320371 [TBL] [Abstract][Full Text] [Related]
4. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. Zhang C; Lipparini F; Stopkowicz S; Gauss J; Cheng L J Chem Theory Comput; 2024 Jan; 20(2):787-798. PubMed ID: 38198515 [TBL] [Abstract][Full Text] [Related]
5. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hamiltonian. Lipparini F; Gauss J J Chem Theory Comput; 2016 Sep; 12(9):4284-95. PubMed ID: 27464026 [TBL] [Abstract][Full Text] [Related]
6. Scalar Breit interaction for molecular calculations. Sun S; Ehrman J; Zhang T; Sun Q; Dyall KG; Li X J Chem Phys; 2023 May; 158(17):. PubMed ID: 37139994 [TBL] [Abstract][Full Text] [Related]
7. Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian. Zhang C; Cheng L J Phys Chem A; 2022 Jul; 126(27):4537-4553. PubMed ID: 35763592 [TBL] [Abstract][Full Text] [Related]
8. A full-pivoting algorithm for the Cholesky decomposition of two-electron repulsion and spin-orbit coupling integrals. Piccardo M; Soncini A J Comput Chem; 2017 Dec; 38(32):2775-2783. PubMed ID: 28944973 [TBL] [Abstract][Full Text] [Related]
9. Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields. Blaschke S; Stopkowicz S J Chem Phys; 2022 Jan; 156(4):044115. PubMed ID: 35105060 [TBL] [Abstract][Full Text] [Related]
10. Accuracy and Efficiency of Coupled-Cluster Theory Using Density Fitting/Cholesky Decomposition, Frozen Natural Orbitals, and a t1-Transformed Hamiltonian. DePrince AE; Sherrill CD J Chem Theory Comput; 2013 Jun; 9(6):2687-96. PubMed ID: 26583862 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. Peng B; Kowalski K J Chem Theory Comput; 2017 Sep; 13(9):4179-4192. PubMed ID: 28834428 [TBL] [Abstract][Full Text] [Related]
12. Multilevel CC2 and CCSD in Reduced Orbital Spaces: Electronic Excitations in Large Molecular Systems. Folkestad SD; Kjønstad EF; Goletto L; Koch H J Chem Theory Comput; 2021 Feb; 17(2):714-726. PubMed ID: 33417769 [TBL] [Abstract][Full Text] [Related]
13. Efficient Implementation of the Second-Order Quasidegenerate Perturbation Theory with Density-Fitting and Cholesky Decomposition Approximations: Is It Possible To Use Hartree-Fock Orbitals for a Multiconfigurational Perturbation Theory? Bozkaya U J Chem Theory Comput; 2019 Aug; 15(8):4415-4429. PubMed ID: 31318552 [TBL] [Abstract][Full Text] [Related]
14. An efficient algorithm for Cholesky decomposition of electron repulsion integrals. Folkestad SD; Kjønstad EF; Koch H J Chem Phys; 2019 May; 150(19):194112. PubMed ID: 31117774 [TBL] [Abstract][Full Text] [Related]
15. NMR chemical shift computations at second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals. Burger S; Lipparini F; Gauss J; Stopkowicz S J Chem Phys; 2021 Aug; 155(7):074105. PubMed ID: 34418917 [TBL] [Abstract][Full Text] [Related]
16. Coupled Cluster and Møller-Plesset Perturbation Theory Calculations of Noncovalent Intermolecular Interactions using Density Fitting with Auxiliary Basis Sets from Cholesky Decompositions. Boström J; Pitoňák M; Aquilante F; Neogrády P; Pedersen TB; Lindh R J Chem Theory Comput; 2012 Jun; 8(6):1921-8. PubMed ID: 26593826 [TBL] [Abstract][Full Text] [Related]
17. Analytic evaluation of first-order properties within the mean-field variant of spin-free exact two-component theory. Kirsch T; Engel F; Gauss J J Chem Phys; 2019 May; 150(20):204115. PubMed ID: 31153222 [TBL] [Abstract][Full Text] [Related]
18. Cholesky decomposition within local multireference singles and doubles configuration interaction. Chwee TS; Carter EA J Chem Phys; 2010 Feb; 132(7):074104. PubMed ID: 20170212 [TBL] [Abstract][Full Text] [Related]
19. General implementation of the resolution-of-the-identity and Cholesky representations of electron repulsion integrals within coupled-cluster and equation-of-motion methods: theory and benchmarks. Epifanovsky E; Zuev D; Feng X; Khistyaev K; Shao Y; Krylov AI J Chem Phys; 2013 Oct; 139(13):134105. PubMed ID: 24116550 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric Density Fitting with Modified Cholesky Decomposition Applied to Second-Order Electron Propagator. Lew-Yee JFH; Flores-Moreno R; Morales JL; M Del Campo J J Chem Theory Comput; 2020 Mar; 16(3):1597-1605. PubMed ID: 31967819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]