These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39269117)
41. A new strategy to achieve high antimicrobial activity: green synthesised silver nanoparticle formulations with Ozdemir C; Gencer M; Coksu I; Ozbek T; Derman S Arh Hig Rada Toksikol; 2023 Jun; 74(2):90-98. PubMed ID: 37357883 [TBL] [Abstract][Full Text] [Related]
42. Biosynthesis of Silver Nanoparticles Functionalized with Histidine and Phenylalanine Amino Acids for Potential Antioxidant and Antibacterial Activities. Shumi G; Demissie TB; Eswaramoorthy R; Bogale RF; Kenasa G; Desalegn T ACS Omega; 2023 Jul; 8(27):24371-24386. PubMed ID: 37457474 [TBL] [Abstract][Full Text] [Related]
43. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets. Chandraker K; Nagwanshi R; Jadhav SK; Ghosh KK; Satnami ML Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():47-54. PubMed ID: 28329722 [TBL] [Abstract][Full Text] [Related]
44. Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential. Asif M; Yasmin R; Asif R; Ambreen A; Mustafa M; Umbreen S Dose Response; 2022; 20(1):15593258221088709. PubMed ID: 35592270 [TBL] [Abstract][Full Text] [Related]
45. Preparation of Green Silver Nanoparticles and Eco-Friendly Polymer-AgNPs Nanocomposites: A Study of Toxic Properties across Multiple Organisms. Mačák L; Velgosova O; Múdra E; Vojtko M; Dolinská S; Kromka F Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000720 [TBL] [Abstract][Full Text] [Related]
46. Green synthesis of silver nanoparticles using sodium alginate and tannic acid: characterization and anti-S. aureus activity. Tian S; Hu Y; Chen X; Liu C; Xue Y; Han B Int J Biol Macromol; 2022 Jan; 195():515-522. PubMed ID: 34920064 [TBL] [Abstract][Full Text] [Related]
47. Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity. Lombardo PC; Poli AL; Castro LF; Perussi JR; Schmitt CC ACS Appl Mater Interfaces; 2016 Aug; 8(33):21640-7. PubMed ID: 27487246 [TBL] [Abstract][Full Text] [Related]
48. Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Rather MA; Deori PJ; Gupta K; Daimary N; Deka D; Qureshi A; Dutta TK; Joardar SN; Mandal M Chemosphere; 2022 Aug; 300():134497. PubMed ID: 35398470 [TBL] [Abstract][Full Text] [Related]
49. Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties. Chen X; Huang X; Zheng C; Liu Y; Xu T; Liu J J Mater Chem B; 2015 Sep; 3(35):7020-7029. PubMed ID: 32262704 [TBL] [Abstract][Full Text] [Related]
50. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487 [TBL] [Abstract][Full Text] [Related]
51. A novel approach for the biosynthesis of silver nanoparticles using the defensive gland extracts of the beetle, Luprops tristis Fabricius. Ajaykumar AP; Sabira O; Sebastian M; Varma SR; Roy KB; Binitha VS; Rasheed VA; Jayaraj KN; Vignesh AR Sci Rep; 2023 Jun; 13(1):10186. PubMed ID: 37349362 [TBL] [Abstract][Full Text] [Related]
52. Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. Liu C; Shen J; Yeung KWK; Tjong SC ACS Biomater Sci Eng; 2017 Mar; 3(3):471-486. PubMed ID: 33465942 [TBL] [Abstract][Full Text] [Related]
53. Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Miri A; Dorani N; Darroudi M; Sarani M Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(9):46-50. PubMed ID: 27585261 [TBL] [Abstract][Full Text] [Related]
54. Green Synthesis of Silver Nanoparticles Using Althubiti AA; Alsudir SA; Alfahad AJ; Alshehri AA; Bakr AA; Alamer AA; Alrasheed RH; Tawfik EA Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003704 [TBL] [Abstract][Full Text] [Related]
55. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Gurunathan S; Han J; Park JH; Kim JH Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313 [TBL] [Abstract][Full Text] [Related]
56. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. de Faria AF; Martinez DS; Meira SM; de Moraes AC; Brandelli A; Filho AG; Alves OL Colloids Surf B Biointerfaces; 2014 Jan; 113():115-24. PubMed ID: 24060936 [TBL] [Abstract][Full Text] [Related]
57. Ultra-sonication-enhanced green synthesis of silver nanoparticles using Sekar V; Balakrishnan C; Kathirvel P; Swamiappan S; Alshehri MA; Sayed S; Panneerselvam C Artif Cells Nanomed Biotechnol; 2022 Dec; 50(1):177-187. PubMed ID: 35735785 [TBL] [Abstract][Full Text] [Related]
58. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Kim TY; Cha SH; Cho S; Park Y Arch Pharm Res; 2016 Apr; 39(4):465-473. PubMed ID: 26895244 [TBL] [Abstract][Full Text] [Related]
59. Sudhakar C; Selvam K; Govarthanan M; Senthilkumar B; Sengottaiyan A; Stalin M; Selvankumar T J Genet Eng Biotechnol; 2015 Dec; 13(2):93-99. PubMed ID: 30647572 [TBL] [Abstract][Full Text] [Related]
60. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Küp FÖ; Çoşkunçay S; Duman F Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110207. PubMed ID: 31761206 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]