These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39269438)
1. Surface-enhanced Raman scattering enhancement using a hybrid gold nanoparticles@carbon nanodot substrate for herbicide detection. Aboualigaledari N; Jayapalan A; Tukur P; Liu M; Tukur F; Zhang Y; Ducatte G; Verma M; Tarus J; Hunyadi Murph SE; Wei J Analyst; 2024 Oct; 149(21):5277-5286. PubMed ID: 39269438 [TBL] [Abstract][Full Text] [Related]
2. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Sridhar K; Inbaraj BS; Chen BH Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615 [TBL] [Abstract][Full Text] [Related]
3. Application of Nanohybrid Substrates with Layer-by-Layer Self-Assembling Properties to High-Sensitivity Surface-Enhanced Raman Scattering Detection. Chen YF; Lee YC; Lin WW; Lu MC; Yang YC; Chiu CW ACS Omega; 2024 Jan; 9(1):1894-1903. PubMed ID: 38222643 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional nanoporous gold/gold nanoparticles substrate for surface-enhanced Raman scattering detection of illegal additives in food. Zhang Y; Wang H; Ni C; Wang Q; Lin T Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124879. PubMed ID: 39067360 [TBL] [Abstract][Full Text] [Related]
6. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor. Ma H; Zhang S; Yuan G; Liu Y; Cao X; Kong X; Wang Y Appl Spectrosc; 2023 Oct; 77(10):1163-1172. PubMed ID: 37654053 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Gold Nanoparticles/Graphene-PDDA Nanohybrids for Bio-detection by SERS Nanotechnology. Mevold AH; Hsu WW; Hardiansyah A; Huang LY; Yang MC; Liu TY; Chan TY; Wang KS; Su YA; Jeng RJ; Wang JK; Wang YL Nanoscale Res Lett; 2015 Dec; 10(1):397. PubMed ID: 26459427 [TBL] [Abstract][Full Text] [Related]
8. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705 [TBL] [Abstract][Full Text] [Related]
9. Ag-Au-Cu Trimetallic Alloy Microflower: A Highly Sensitive SERS Substrate for Detection of Low Raman Scattering Cross-Section Thiols. Kaja S; Nag A Langmuir; 2023 Nov; 39(46):16562-16573. PubMed ID: 37943256 [TBL] [Abstract][Full Text] [Related]
10. ReS Li Y; Liao H; Wu S; Weng X; Wang Y; Liu L; Qu J; Song J; Ye S; Yu X; Chen Y Molecules; 2023 May; 28(11):. PubMed ID: 37298764 [TBL] [Abstract][Full Text] [Related]
11. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
13. Molecularly imprinted core-shell Au nanoparticles for 2,4-dichlorophenoxyacetic acid detection in milk using surface-enhanced Raman spectroscopy. Feng S; Hu Y; Chen L; Lu X Anal Chim Acta; 2022 Sep; 1227():340333. PubMed ID: 36089302 [TBL] [Abstract][Full Text] [Related]
14. Microfiber-directed reversible assembly of Au nanoparticles for SERS detection of pollutants. Xu Y; Zhong H; Shi M; Zheng Z; Liu S; Shou Q; Li H; Yang G; Li Z; Xing X Opt Lett; 2022 Apr; 47(8):2028-2031. PubMed ID: 35427328 [TBL] [Abstract][Full Text] [Related]
15. Gold nanoparticles decorated 2D-WSe Majumdar D; Jana S; Kumar Ray S Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121349. PubMed ID: 35550990 [TBL] [Abstract][Full Text] [Related]
16. Immobilization and 3D Hot-Junction Formation of Gold Nanoparticles on Two-Dimensional Silicate Nanoplatelets as Substrates for High-Efficiency Surface-Enhanced Raman Scattering Detection. Lee YC; Chiu CW Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30823691 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous and cross-distributed metal structure hybridized with MoS Zhao X; Yu J; Zhang Z; Li C; Li Z; Jiang S; Pan J; Liu A; Zhang C; Man B Opt Express; 2018 Sep; 26(18):23831-23843. PubMed ID: 30184879 [TBL] [Abstract][Full Text] [Related]
18. Polyacrylonitrile as a versatile matrix for gold nanoparticle-based SERS substrates. Sharma S; Kumar R; Yadav RM Nanoscale Adv; 2024 Feb; 6(4):1065-1073. PubMed ID: 38356638 [TBL] [Abstract][Full Text] [Related]
19. AuNPs@MIL-101 (Cr) as a SERS-Active Substrate for Sensitive Detection of VOCs. Xie D; Wang R; Fu J; Zhao Z; Li M Front Bioeng Biotechnol; 2022; 10():921693. PubMed ID: 35800331 [TBL] [Abstract][Full Text] [Related]
20. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Choi S; Ahn M; Kim J Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]