These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 39269725)
1. Effect of Surface Morphologies on the Li H; Yang X ACS Biomater Sci Eng; 2024 Oct; 10(10):6017-6028. PubMed ID: 39269725 [TBL] [Abstract][Full Text] [Related]
2. Corrosion degradation and prevention by surface modification of biometallic materials. Singh R; Dahotre NB J Mater Sci Mater Med; 2007 May; 18(5):725-51. PubMed ID: 17143737 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired surface functionalization of metallic biomaterials. Su Y; Luo C; Zhang Z; Hermawan H; Zhu D; Huang J; Liang Y; Li G; Ren L J Mech Behav Biomed Mater; 2018 Jan; 77():90-105. PubMed ID: 28898726 [TBL] [Abstract][Full Text] [Related]
4. Corrosion and surface modification on biocompatible metals: A review. Asri RIM; Harun WSW; Samykano M; Lah NAC; Ghani SAC; Tarlochan F; Raza MR Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1261-1274. PubMed ID: 28532004 [TBL] [Abstract][Full Text] [Related]
5. A biodegradable Zn-5Gd alloy with biomechanical compatibility, cytocompatibility, antibacterial ability, and in vitro and in vivo osteogenesis for orthopedic applications. Tong X; Dong Y; Han Y; Zhou R; Zhu L; Zhang D; Dai Y; Shen X; Li Y; Wen C; Lin J Acta Biomater; 2024 Mar; 177():538-559. PubMed ID: 38253302 [TBL] [Abstract][Full Text] [Related]
6. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Shahin M; Munir K; Wen C; Li Y Acta Biomater; 2019 Sep; 96():1-19. PubMed ID: 31181263 [TBL] [Abstract][Full Text] [Related]
7. Metallic Materials for Bone Repair. Fan L; Chen S; Yang M; Liu Y; Liu J Adv Healthc Mater; 2024 Jan; 13(3):e2302132. PubMed ID: 37883735 [TBL] [Abstract][Full Text] [Related]
8. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Kiani F; Wen C; Li Y Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312 [TBL] [Abstract][Full Text] [Related]
9. Biosensitive and antibacterial coatings on metallic material for medical applications. Goldmann WH Cell Biol Int; 2021 Aug; 45(8):1624-1632. PubMed ID: 33818836 [TBL] [Abstract][Full Text] [Related]
10. Corrosion of Metallic Biomaterials: A Review. Eliaz N Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30696087 [TBL] [Abstract][Full Text] [Related]
11. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253 [TBL] [Abstract][Full Text] [Related]
12. Reduced antibacterial property of metallic magnesium in vivo. Hou P; Zhao C; Cheng P; Wu H; Ni J; Zhang S; Lou T; Wang C; Han P; Zhang X; Chai Y Biomed Mater; 2016 Dec; 12(1):015010. PubMed ID: 27934788 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application. Tong X; Dong Y; Zhou R; Shen X; Li Y; Jiang Y; Wang H; Wang J; Lin J; Wen C Adv Healthc Mater; 2024 May; 13(12):e2303975. PubMed ID: 38235953 [TBL] [Abstract][Full Text] [Related]
14. Mechanical properties, corrosion behavior, and in vitro and in vivo biocompatibility of hot-extruded Zn-5RE (RE = Y, Ho, and Er) alloys for biodegradable bone-fixation applications. Tong X; Miao D; Zhou R; Shen X; Luo P; Ma J; Li Y; Lin J; Wen C; Sun X Acta Biomater; 2024 Sep; 185():55-72. PubMed ID: 38997078 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of the corrosion behavior of MA-956 and conventional metallic biomaterials. Escudero ML; López MF; Ruiz J; García-Alonso MC; Canahua H J Biomed Mater Res; 1996 Jul; 31(3):313-7. PubMed ID: 8806056 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Characteristics, In Vitro Degradation, Cytotoxicity, and Antibacterial Evaluation of Zn-4.0Ag Alloy as a Biodegradable Material. Li P; Schille C; Schweizer E; Rupp F; Heiss A; Legner C; Klotz UE; Geis-Gerstorfer J; Scheideler L Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29518938 [TBL] [Abstract][Full Text] [Related]
17. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo evaluation of osteogenesis and antibacterial activity of MgGa alloys. Zhang Z; He D; Wang X; Ma X; Zheng Y; Gu X; Li Y Acta Biomater; 2024 Sep; 185():85-97. PubMed ID: 39025394 [TBL] [Abstract][Full Text] [Related]
19. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430 [TBL] [Abstract][Full Text] [Related]
20. Recent Advancements in Materials and Coatings for Biomedical Implants. Amirtharaj Mosas KK; Chandrasekar AR; Dasan A; Pakseresht A; Galusek D Gels; 2022 May; 8(5):. PubMed ID: 35621621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]