These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39270708)

  • 1. Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet.
    Xue X; Sun L; Liang D; Zhu J; Liu L; Sun Q; Liu H; Gao J; Fu X; Ding J; Dai X; Tao L; Cheng J; Li T; Zhou F
    Phys Med Biol; 2024 Sep; 69(19):. PubMed ID: 39270708
    [No Abstract]   [Full Text] [Related]  

  • 2. A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma.
    Xue X; Liang D; Wang K; Gao J; Ding J; Zhou F; Xu J; Liu H; Sun Q; Jiang P; Tao L; Shi W; Cheng J
    J Appl Clin Med Phys; 2024 Jul; 25(7):e14371. PubMed ID: 38682540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of auto-segmentation for brachytherapy of postoperative cervical cancer using deep learning-based workflow.
    Wang J; Chen Y; Tu Y; Xie H; Chen Y; Luo L; Zhou P; Tang Q
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753762
    [No Abstract]   [Full Text] [Related]  

  • 4. A deep learning-based self-adapting ensemble method for segmentation in gynecological brachytherapy.
    Li Z; Zhu Q; Zhang L; Yang X; Li Z; Fu J
    Radiat Oncol; 2022 Sep; 17(1):152. PubMed ID: 36064571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual convolution-transformer UNet (DCT-UNet) for organs at risk and clinical target volume segmentation in MRI for cervical cancer brachytherapy.
    Kim G; Viswanathan AN; Bhatia R; Landman Y; Roumeliotis M; Erickson B; Schmidt EJ; Lee J
    Phys Med Biol; 2024 Oct; 69(21):. PubMed ID: 39378904
    [No Abstract]   [Full Text] [Related]  

  • 6. Deformable image registration-based contour propagation yields clinically acceptable plans for MRI-based cervical cancer brachytherapy planning.
    Chapman CH; Polan D; Vineberg K; Jolly S; Maturen KE; Brock KK; Prisciandaro JI
    Brachytherapy; 2018; 17(2):360-367. PubMed ID: 29331573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of magnetic resonance images for high-dose-rate cervical cancer brachytherapy using deep learning.
    Yoganathan SA; Paul SN; Paloor S; Torfeh T; Chandramouli SH; Hammoud R; Al-Hammadi N
    Med Phys; 2022 Mar; 49(3):1571-1584. PubMed ID: 35094405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks.
    Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W
    J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of high-risk clinical target volume and organs at risk in brachytherapy of cervical cancer with a convolutional neural network.
    Zhu J; Yan J; Zhang J; Yu L; Song A; Zheng Z; Chen Y; Wang S; Chen Q; Liu Z; Zhang F
    Cancer Radiother; 2024 Aug; 28(4):354-364. PubMed ID: 39147623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-based three-dimensional dose prediction for tandem-and-ovoid brachytherapy.
    Cortes KG; Kallis K; Simon A; Mayadev J; Meyers SM; Moore KL
    Brachytherapy; 2022; 21(4):532-542. PubMed ID: 35562285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric analysis of 3D image-guided HDR brachytherapy planning for the treatment of cervical cancer: is point A-based dose prescription still valid in image-guided brachytherapy?
    Kim H; Beriwal S; Houser C; Huq MS
    Med Dosim; 2011; 36(2):166-70. PubMed ID: 20488690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer.
    Rigaud B; Anderson BM; Yu ZH; Gobeli M; Cazoulat G; Söderberg J; Samuelsson E; Lidberg D; Ward C; Taku N; Cardenas C; Rhee DJ; Venkatesan AM; Peterson CB; Court L; Svensson S; Löfman F; Klopp AH; Brock KK
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(4):1096-1110. PubMed ID: 33181248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalizability of deep learning in organ-at-risk segmentation: A transfer learning study in cervical brachytherapy.
    Ni R; Han K; Haibe-Kains B; Rink A
    Radiother Oncol; 2024 Aug; 197():110332. PubMed ID: 38763356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network dose prediction for cervical brachytherapy: Overcoming data scarcity for applicator-specific models.
    Moore LC; Ahern F; Li L; Kallis K; Kisling K; Cortes KG; Nwachukwu C; Rash D; Yashar CM; Mayadev J; Zou J; Vasconcelos N; Meyers SM
    Med Phys; 2024 Jul; 51(7):4591-4606. PubMed ID: 38814165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Accuracy of different image registration methods in image-guided adaptive brachytherapy for cervical cancer].
    Peng Q; Peng Y; Zhu J; Cai M; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Nov; 38(11):1344-1348. PubMed ID: 30514683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.
    Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W
    Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-configuring nnU-Net for automatic delineation of the organs at risk and target in high-dose rate cervical brachytherapy, a low/middle-income country's experience.
    Duprez D; Trauernicht C; Simonds H; Williams O
    J Appl Clin Med Phys; 2023 Aug; 24(8):e13988. PubMed ID: 37042449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer.
    Wang J; Chen Y; Xie H; Luo L; Tang Q
    Sci Rep; 2022 Aug; 12(1):13650. PubMed ID: 35953516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer.
    Mohammadi R; Shokatian I; Salehi M; Arabi H; Shiri I; Zaidi H
    Radiother Oncol; 2021 Jun; 159():231-240. PubMed ID: 33831446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive evaluation of adaptive daily planning for cervical cancer HDR brachytherapy.
    Meerschaert R; Nalichowski A; Burmeister J; Paul A; Miller S; Hu Z; Zhuang L
    J Appl Clin Med Phys; 2016 Nov; 17(6):323-333. PubMed ID: 27929505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.