These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39270760)
1. Macrolide-loaded nanofibrous inserts with polycaprolactone and cellulose acetate base for sustained ocular delivery: Pharmacokinetic study in Rabbit's eye. Taghe S; Mirzaeei S; Pakdaman N; Kazemi A; Nokhodchi A Int J Pharm; 2024 Nov; 665():124699. PubMed ID: 39270760 [TBL] [Abstract][Full Text] [Related]
2. Design and development of dual drug-loaded nanofibrous inserts for ophthalmic sustained delivery of AMK and VAN: Pharmacokinetic study in rabbit's eye. Taghe S; Mirzaeei S; Hosseinkhani T Int J Pharm; 2024 May; 656():124056. PubMed ID: 38548072 [TBL] [Abstract][Full Text] [Related]
3. Preparation and Evaluation of Nanofibrous and Film-Structured Ciprofloxacin Hydrochloride Inserts for Sustained Ocular Delivery: Pharmacokinetic Study in Rabbit's Eye. Taghe S; Mirzaeei S; Ahmadi A Life (Basel); 2023 Mar; 13(4):. PubMed ID: 37109442 [TBL] [Abstract][Full Text] [Related]
4. Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-layered Electrospun Nanofibers as an Ocular Matrix for the Controlled Release of Ofloxacin: an In Vitro and In Vivo Evaluation. Mirzaeei S; Taghe S; Asare-Addo K; Nokhodchi A AAPS PharmSciTech; 2021 Jun; 22(5):170. PubMed ID: 34085150 [TBL] [Abstract][Full Text] [Related]
5. Preparation of polycaprolactone and polymethacrylate nanofibers for controlled ocular delivery of ketorolac tromethamine: Pharmacokinetic study in Rabbit's Eye. Taghe S; Mirzaeei S; Bagheri M Eur J Pharm Sci; 2024 Jan; 192():106631. PubMed ID: 37951316 [TBL] [Abstract][Full Text] [Related]
7. Rhamnus prinoides leaf extract loaded polycaprolactone-cellulose acetate nanofibrous scaffold as potential wound dressing: An in vitro study. Adamu BF; Gao J; Xiangnan Y; Tan S; Zhao H; Jhatial AK Int J Biol Macromol; 2024 Nov; 279(Pt 2):134934. PubMed ID: 39179067 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Khoshnevisan K; Maleki H; Samadian H; Doostan M; Khorramizadeh MR Int J Biol Macromol; 2019 Nov; 140():1260-1268. PubMed ID: 31472212 [TBL] [Abstract][Full Text] [Related]
9. Cefazolin-loaded polycaprolactone fibers produced via different electrospinning methods: Characterization, drug release and antibacterial effect. Radisavljevic A; Stojanovic DB; Perisic S; Djokic V; Radojevic V; Rajilic-Stojanovic M; Uskokovic PS Eur J Pharm Sci; 2018 Nov; 124():26-36. PubMed ID: 30130639 [TBL] [Abstract][Full Text] [Related]
10. Controlled curcumin release from nanofibers based on amphiphilic-block segmented polyurethanes. Shababdoust A; Zandi M; Ehsani M; Shokrollahi P; Foudazi R Int J Pharm; 2020 Feb; 575():118947. PubMed ID: 31837404 [TBL] [Abstract][Full Text] [Related]
11. Emulsion electrospun epigallocatechin gallate-loaded silk fibroin/polycaprolactone nanofibrous membranes for enhancing guided bone regeneration. Chen H; Xu J; Dun Z; Yang Y; Wang Y; Shu F; Zhang Z; Liu M Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39121887 [TBL] [Abstract][Full Text] [Related]
12. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Polat HK; Bozdağ Pehlivan S; Özkul C; Çalamak S; Öztürk N; Aytekin E; Fırat A; Ulubayram K; Kocabeyoğlu S; İrkeç M; Çalış S Int J Pharm; 2020 Jul; 585():119552. PubMed ID: 32569814 [TBL] [Abstract][Full Text] [Related]
13. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
14. Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: Slow release for antibacterial control. Ballesteros CAS; Correa DS; Zucolotto V Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110334. PubMed ID: 31761214 [TBL] [Abstract][Full Text] [Related]
15. Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Ulker Turan C; Metin A; Guvenilir Y Eur J Pharm Biopharm; 2021 May; 162():59-69. PubMed ID: 33727142 [TBL] [Abstract][Full Text] [Related]
16. Formulation and Evaluation of Atorvastatin Calcium-Poly-ε-Caprolactone Nanoparticles Loaded Ocular Inserts for Sustained Release and Antiinflammatory Efficacy. Girgis GNS Curr Pharm Biotechnol; 2020; 21(15):1688-1698. PubMed ID: 32427080 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Azithromycin Nanofibers as Controlled Release Ophthalmic Drug Carriers Using Electrospinning Technique: Taghe S; Mehrandish S; Mirzaeei S Adv Pharm Bull; 2022 Mar; 12(2):346-355. PubMed ID: 35620329 [No Abstract] [Full Text] [Related]
18. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Da Silva GR; Lima TH; Fernandes-Cunha GM; Oréfice RL; Da Silva-Cunha A; Zhao M; Behar-Cohen F Eur J Pharm Biopharm; 2019 Sep; 142():20-30. PubMed ID: 31129274 [TBL] [Abstract][Full Text] [Related]
19. Ofloxacin Loaded Electrospun Fibers for Ocular Drug Delivery: Effect of Formulation Variables on Fiber Morphology and Drug Release. Karataş A; Algan AH; Pekel-Bayramgil N; Turhan F; Altanlar N Curr Drug Deliv; 2016; 13(3):433-43. PubMed ID: 26521656 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Anti-glaucoma Nanofibers as Controlled-Release Inserts for Ophthalmic Delivery of Brimonidine Tartrate: Shaikhi Shoushtari F; Naghshbandy M; Rezaei L; Mehrandish S; Mirzaeei S Adv Pharm Bull; 2024 Jul; 14(2):378-387. PubMed ID: 39206390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]