These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3927111)

  • 1. Shunt pathway of mevalonate metabolism.
    Landau BR; Brunengraber H
    Methods Enzymol; 1985; 110():100-14. PubMed ID: 3927111
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantitative role of different embryonic tissues in mevalonate metabolism by sterol and nonsterol pathways. Relationship with enzyme activities of cholesterogenesis.
    Marco C; González-Pacanowska D; Segovia JL; García-Peregrín E
    Biochim Biophys Acta; 1986 Sep; 878(2):238-42. PubMed ID: 3019412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative aspects of mevalonate metabolism in rat liver and kidney.
    Jabalquinto AM; Cardemil E
    Comp Biochem Physiol B; 1982; 73(2):181-7. PubMed ID: 6756767
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of leucine with mevalonate and acetate as a precursor of tissue and serum cholesterol in the rat.
    Miettinen TA; Penttilä IM
    Ann Med Exp Biol Fenn; 1971; 49(1):20-8. PubMed ID: 5576238
    [No Abstract]   [Full Text] [Related]  

  • 5. Cholesterogenesis induction in human lymphocytes by sterols efflux or phytohemagglutinin stimulation : cellular division as the requirement for efficient cholesterol biosynthesis in lymphocytes.
    Tabacik C; Astruc M; Laporte M; Descomps B; Crastes de Paulet A
    Biochem Biophys Res Commun; 1979 May; 88(2):706-12. PubMed ID: 465064
    [No Abstract]   [Full Text] [Related]  

  • 6. Alteration of cholesterol synthesis in rat liver as induced by 4-methyl-5-hydroxy valeric acid.
    Díaz-Zagoya JC; Hurtado ME; González J
    Experientia; 1976 Sep; 32(9):1138-40. PubMed ID: 971744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some aspects of the control of hepatic cholesterol biosynthesis.
    Gould RG
    Expos Annu Biochim Med; 1977; 33():13-38. PubMed ID: 891895
    [No Abstract]   [Full Text] [Related]  

  • 8. The quantitative role of the kidneys in the in vivo metabolism of mevalonate.
    Wiley MH; Howton MM; Siperstein MD
    J Biol Chem; 1977 Jan; 252(2):548-54. PubMed ID: 833143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of triarimol on cholesterol biosynthesis in rat-liver subcellular.
    Mitropoulos KA; Gibbons GF
    Biochem Biophys Res Commun; 1976 Aug; 71(3):892-900. PubMed ID: 962959
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of hepatic cholesterogenesis by polar steroids accumulated after cholesterol feeding.
    Aguilera JA; García-Molina V; Arce V; García-Peregrín E
    Biosci Rep; 1988 Apr; 8(2):155-62. PubMed ID: 3408811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mevalonate metabolism in pregnant rats.
    Feingold KR; Wiley MH; MacRae G; Siperstein MD
    Metabolism; 1980 Sep; 29(9):285-91. PubMed ID: 6774201
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for negative feedback control of cholesterogenesis from mevalonate in liver: absence in the intestine of guinea pigs fed a 0.5% cholesterol diet.
    Sablé-Amplis R; Sicart R
    Biochem Biophys Res Commun; 1982 Oct; 108(3):1092-100. PubMed ID: 7181883
    [No Abstract]   [Full Text] [Related]  

  • 13. [Participation of food lipids in regulating cholesterol biosynthesis in the body].
    Sharmanov TSh; Maksimenko VB
    Vopr Pitan; 1981; (4):3-7. PubMed ID: 6170168
    [No Abstract]   [Full Text] [Related]  

  • 14. The in vitro metabolism of mevalonate by sterol and nonsterol pathways in neonatal chick.
    Aguilera JA; Linares A; Arce V; García-Peregrín E
    Comp Biochem Physiol B; 1982; 71(4):617-21. PubMed ID: 6806006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sitosterolemia.
    Salen G; Shefer S; Nguyen L; Ness GC; Tint GS; Batta AK
    Subcell Biochem; 1997; 28():453-76. PubMed ID: 9090303
    [No Abstract]   [Full Text] [Related]  

  • 16. The contribution of the cholesterol biosynthetic pathway to intermediary metabolism and cell function.
    Fears R
    Biochem J; 1981 Oct; 199(1):1-7. PubMed ID: 7039614
    [No Abstract]   [Full Text] [Related]  

  • 17. Mevalonate metabolism: role of kidneys.
    Edmond J; Fogelman AM; Popják G
    Science; 1976 Jul; 193(4248):154-6. PubMed ID: 935865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the shunt pathway of mevalonate metabolism to the regulation of cholesterol synthesis in rat liver.
    Marinier E; Lincoln BC; Garneau M; David F; Brunengraber H
    J Biol Chem; 1987 Dec; 262(35):16936-40. PubMed ID: 3680279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the mevalonate pathway.
    Goldstein JL; Brown MS
    Nature; 1990 Feb; 343(6257):425-30. PubMed ID: 1967820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squalene, lanosterol and cholesterol synthesis from acetate in neonatal chick tissues.
    Linares A; Arce V; Aguilera JA; García-Peregrín E
    Rev Esp Fisiol; 1984 Dec; 40(4):425-9. PubMed ID: 6531508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.