These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39271665)

  • 1. Multistage lithospheric drips control active basin formation within an uplifting orogenic plateau.
    Andersen AJ; Göğüş OH; Pysklywec RN; Şengül Uluocak E; Santimano T
    Nat Commun; 2024 Sep; 15(1):7899. PubMed ID: 39271665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid surface uplift and crustal flow in the Central Andes (southern Peru) controlled by lithospheric drip dynamics.
    Göğüş OH; Sundell K; Uluocak EŞ; Saylor J; Çetiner U
    Sci Rep; 2022 Apr; 12(1):5500. PubMed ID: 35365670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miocene surface uplift and orogenic evolution of the southern Andean Plateau (central Puna), northwestern Argentina.
    Pingel H; Alonso RN; Bookhagen B; Cottle JM; Mulch A; Rohrmann A; Strecker MR
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2303964120. PubMed ID: 37812707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau.
    Göğüş OH; Pysklywec RN; Şengör AMC; Gün E
    Nat Commun; 2017 Nov; 8(1):1538. PubMed ID: 29142259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated crustal and mantle melting documents proto-Tibetan Plateau growth.
    Li W; He R; Yuan X; Schneider F; Tilmann F; Guo Z; Chen YJ
    Natl Sci Rev; 2024 Sep; 11(9):nwae257. PubMed ID: 39239122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basin record of a Miocene lithosphere drip beneath the Colorado Plateau.
    He JJY; Kapp P
    Nat Commun; 2023 Jul; 14(1):4433. PubMed ID: 37481607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uplift of the Tibetan Plateau driven by mantle delamination from the overriding plate.
    Xie Y; Balázs A; Gerya T; Xiong X
    Nat Geosci; 2024; 17(7):683-688. PubMed ID: 39006245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits.
    Hou Z; Wang Q; Zhang H; Xu B; Yu N; Wang R; Groves DI; Zheng Y; Han S; Gao L; Yang L
    Natl Sci Rev; 2023 Mar; 10(3):nwac257. PubMed ID: 36879845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithospheric foundering and underthrusting imaged beneath Tibet.
    Chen M; Niu F; Tromp J; Lenardic A; Lee CA; Cao W; Ribeiro J
    Nat Commun; 2017 Jun; 8():15659. PubMed ID: 28585571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling.
    Levander A; Schmandt B; Miller MS; Liu K; Karlstrom KE; Crow RS; Lee CT; Humphreys ED
    Nature; 2011 Apr; 472(7344):461-5. PubMed ID: 21525930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mantle-flow diversion beneath the Iranian plateau induced by Zagros' lithospheric keel.
    Kaviani A; Mahmoodabadi M; Rümpker G; Pilia S; Tatar M; Nilfouroushan F; Yamini-Fard F; Moradi A; Ali MY
    Sci Rep; 2021 Feb; 11(1):2848. PubMed ID: 33531534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geology of the Crust and Mantle, Western United States: Geophysical data reveal a thin crust and anomalous upper mantle characteristic of active regions.
    Thompson GA; Talwani M
    Science; 1964 Dec; 146(3651):1539-49. PubMed ID: 17775979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet.
    Legendre CP; Deschamps F; Zhao L; Chen QF
    Sci Rep; 2015 Nov; 5():16644. PubMed ID: 26548657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomographic evidence for localized lithospheric shear along the altyn tagh fault.
    Wittlinger G; Tapponnier P; Poupinet G; Mei J; Danian S; Herquel G; Masson F
    Science; 1998 Oct; 282(5386):74-6. PubMed ID: 9756478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upward and outward growth of north-central Tibet: Mechanisms that build high-elevation, low-relief plateaus.
    Li L; Garzione CN
    Sci Adv; 2023 Jul; 9(27):eadh3058. PubMed ID: 37418530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the mechanisms of mid-Tertiary uplift of the NE Tibetan Plateau.
    Wei HH; Wu GL; Ding L; Fan LG; Li L; Meng QR
    Natl Sci Rev; 2023 Apr; 10(4):nwad008. PubMed ID: 36960219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau.
    Zhang M; Guo Z; Xu S; Barry PH; Sano Y; Zhang L; Halldórsson SA; Chen AT; Cheng Z; Liu CQ; Li SL; Lang YC; Zheng G; Li Z; Li L; Li Y
    Nat Commun; 2021 Jul; 12(1):4157. PubMed ID: 34230487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Southern Africa crustal anisotropy reveals coupled crust-mantle evolution for over 2 billion years.
    Thybo H; Youssof M; Artemieva IM
    Nat Commun; 2019 Nov; 10(1):5445. PubMed ID: 31784507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body.
    Perkins JP; Ward KM; de Silva SL; Zandt G; Beck SL; Finnegan NJ
    Nat Commun; 2016 Oct; 7():13185. PubMed ID: 27779183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term dynamic topographic support during post-orogenic crustal thinning revealed by stable isotope (δ
    Huyghe D; Mouthereau F; Ségalen L; Furió M
    Sci Rep; 2020 Feb; 10(1):2267. PubMed ID: 32041988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.