These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 392732)
61. Elemental composition of pyroantimonate precipitates analysed by electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS) in vitellogenic ovarian follicles of Drosophila. Heinrich UR; Gutzeit HO; Kreutz W J Microsc; 1991 Apr; 162(Pt 1):123-32. PubMed ID: 1908011 [TBL] [Abstract][Full Text] [Related]
62. Ultrastructural detection of calcium and magnesium in the chromatoid body of mouse spermatids by electron spectroscopic imaging and electron energy loss spectroscopy. Rouelle-Rossier VB; Biggiogera M; Fakan S J Histochem Cytochem; 1993 Aug; 41(8):1155-62. PubMed ID: 8331281 [TBL] [Abstract][Full Text] [Related]
63. Ultrastructural localization of calcium in matrix vesicles and preodontoblasts of developing rat molar tooth germs during initial dentinogenesis. Kogaya Y; Furuhashi K Acta Anat (Basel); 1988; 132(2):100-8. PubMed ID: 3414353 [TBL] [Abstract][Full Text] [Related]
64. The release of membrane-associated calcium from rabbit neutrophils by fixatives. Implications for the use of antimonate staining to localize calcium. Northover AM Histochem J; 1985 Apr; 17(4):443-52. PubMed ID: 3930431 [TBL] [Abstract][Full Text] [Related]
65. Progress in electron microscopic diagnostics: semi-quantitative determination of precipitable calcium in different cell types of the organ of Corti in the guinea-pig. Heinrich UR; Maurer J; Mann W; Kreutz W J Microsc; 1991 Apr; 162(Pt 1):133-40. PubMed ID: 1870108 [TBL] [Abstract][Full Text] [Related]
66. Identification of precipitable Ca2+ by electron spectroscopic imaging and electron energy loss spectroscopy in the organ of Corti of the guinea pig. Heinrich UR; Drechsler M; Kreutz W; Mann W Ultramicroscopy; 1990 Jan; 32(1):1-6. PubMed ID: 2336732 [TBL] [Abstract][Full Text] [Related]
67. The subcellular distribution of zinc in dog prostate studied by x-ray microanalysis. Chandler JA; Sinowatz F; Timms BG; Pierrepoint CG Cell Tissue Res; 1977 Nov; 185(1):89-103. PubMed ID: 589665 [TBL] [Abstract][Full Text] [Related]
68. Variations in the location and size of pyroantimonate precipitates in the immature rat cerebral cortex. Sumi SM J Histochem Cytochem; 1971 Oct; 19(10):591-604. PubMed ID: 4107269 [No Abstract] [Full Text] [Related]
69. Ultrastructural localization of calcium around the membrane of the surface connected system in the human platelet. Daimon T; Mizuhira V; Uchida K Histochemistry; 1978 May; 55(4):271-9. PubMed ID: 96043 [TBL] [Abstract][Full Text] [Related]
70. Studies on the subcellular localization of electrolytes in normal and infarcted canine myocardium. With special reference to calcium ion. Takeyama Y; Ozawa K; Katagiri T Jpn Heart J; 1980 Nov; 21(6):859-72. PubMed ID: 7463723 [TBL] [Abstract][Full Text] [Related]
71. Subcellular localization of calcium in the mouse hypophysis. I. Calcium distribution in the adeno- and neurohypophysis under normal conditions. Stoeckel ME; Hindelang-Gertner C; Dellmann H-D ; Porte A; Stutinsky F Cell Tissue Res; 1975; 157(3):307-22. PubMed ID: 1091357 [TBL] [Abstract][Full Text] [Related]
73. Ultrastructural localization of calcium in the chick chorioallantoic membrane as revealed by cytochemistry and X-ray microanalysis. Komazaki S; Takada M; Clark NB Anat Embryol (Berl); 1992 Dec; 186(6):529-35. PubMed ID: 1292370 [TBL] [Abstract][Full Text] [Related]
74. Ultrastructural localization of calcium in post-mortem bovine muscle: a cytochemical and X-ray microanalytical study. Vignon X; Beaulaton J; Ouali A Histochem J; 1989 Jul; 21(7):403-11. PubMed ID: 2793526 [TBL] [Abstract][Full Text] [Related]
75. Endogenous elements in the prostate. An X-ray microanalytical study of freeze-dried frozen sections and histochemical localization of zinc by potassium pyroantimonate. Timms BG; Chandler JA Histochem J; 1984 Jul; 16(7):733-54. PubMed ID: 6469702 [TBL] [Abstract][Full Text] [Related]
76. Identification of calcium in the retina by the combined use of ultrastructural cytochemistry and laser microprobe mass analysis. Van Reempts JL; Borgers M; De Nollin SR; Garrevoet TC; Jacob WA J Histochem Cytochem; 1984 Jul; 32(7):788-92. PubMed ID: 6736627 [TBL] [Abstract][Full Text] [Related]
77. Selective binding of Ca2+, Zn2+, Cu2+ and K+ by the physodes of the green alga Mougeotia scalaris. Tretyn A; Grolig F; Magdowski G; Wagner G Folia Histochem Cytobiol; 1996; 34(2):103-8. PubMed ID: 8875219 [TBL] [Abstract][Full Text] [Related]
78. Calcium changes in Robinia pseudoacacia pulvinar motor cells during nyctinastic closure mediated by phytochromes. Moysset L; Llambrich E; Simón E Protoplasma; 2019 May; 256(3):615-629. PubMed ID: 30382423 [TBL] [Abstract][Full Text] [Related]
79. X-ray microanalysis of leaf tumors from maize plants experimentally infected with maize rough dwarf virus: scanning and transmission electron microscopic study. Favali MA; Barbieri N; Bianchi A; Bonecchi R; Conti M Virology; 1980 Jun; 103(2):357-68. PubMed ID: 18631653 [TBL] [Abstract][Full Text] [Related]
80. Evaluation of the pyroantimonate technique for localization of tissue sodium. Garfield RE; Henderson RM; Daniel EE Tissue Cell; 1972; 4(4):575-89. PubMed ID: 4568870 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]