These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 39273672)
41. The dynamic duo: combining NMR and small angle scattering in structural biology. Hennig J; Sattler M Protein Sci; 2014 Jun; 23(6):669-82. PubMed ID: 24687405 [TBL] [Abstract][Full Text] [Related]
43. Using NMR Chemical Shifts and Cryo-EM Density Restraints in Iterative Rosetta-MD Protein Structure Refinement. Leelananda SP; Lindert S J Chem Inf Model; 2020 May; 60(5):2522-2532. PubMed ID: 31872764 [TBL] [Abstract][Full Text] [Related]
44. Cryo-EM and solid state NMR together provide a more comprehensive structural investigation of protein fibrils. Fonda BD; Kato M; Li Y; Murray DT Protein Sci; 2024 Oct; 33(10):e5168. PubMed ID: 39276003 [TBL] [Abstract][Full Text] [Related]
46. Patterns in Protein Flexibility: A Comparison of NMR "Ensembles", MD Trajectories, and Crystallographic B-Factors. Reinknecht C; Riga A; Rivera J; Snyder DA Molecules; 2021 Mar; 26(5):. PubMed ID: 33803249 [TBL] [Abstract][Full Text] [Related]
47. Outlier Profiles of Atomic Structures Derived from X-ray Crystallography and from Cryo-Electron Microscopy. Chen L; He J Molecules; 2020 Mar; 25(7):. PubMed ID: 32231015 [No Abstract] [Full Text] [Related]
48. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Boulos I; Jabbour J; Khoury S; Mikhael N; Tishkova V; Candoni N; Ghadieh HE; Veesler S; Bassim Y; Azar S; Harb F Molecules; 2023 Oct; 28(20):. PubMed ID: 37894653 [TBL] [Abstract][Full Text] [Related]
49. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. Mazhab-Jafari MT; Rubinstein JL Sci Adv; 2016 Jul; 2(7):e1600725. PubMed ID: 27532044 [TBL] [Abstract][Full Text] [Related]
50. Prediction of order parameters based on protein NMR structure ensemble and machine learning. Wang Q; Miao Z; Xiao X; Zhang X; Yang D; Jiang B; Liu M J Biomol NMR; 2024 Jun; 78(2):87-94. PubMed ID: 38530516 [TBL] [Abstract][Full Text] [Related]
51. AlphaFold, Artificial Intelligence (AI), and Allostery. Nussinov R; Zhang M; Liu Y; Jang H J Phys Chem B; 2022 Sep; 126(34):6372-6383. PubMed ID: 35976160 [TBL] [Abstract][Full Text] [Related]
52. Using Pseudocontact Shifts and Residual Dipolar Couplings as Exact NMR Restraints for the Determination of Protein Structural Ensembles. Camilloni C; Vendruscolo M Biochemistry; 2015 Dec; 54(51):7470-6. PubMed ID: 26624789 [TBL] [Abstract][Full Text] [Related]
53. Structural biology of SARS-CoV-2. Zaidi AK; Dawoodi S Prog Mol Biol Transl Sci; 2024; 202():31-43. PubMed ID: 38237989 [TBL] [Abstract][Full Text] [Related]
54. Cryo2StructData: A Large Labeled Cryo-EM Density Map Dataset for AI-based Modeling of Protein Structures. Giri N; Wang L; Cheng J Sci Data; 2024 May; 11(1):458. PubMed ID: 38710720 [TBL] [Abstract][Full Text] [Related]
56. Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. Dyson HJ; Wright PE J Biomol NMR; 2019 Dec; 73(12):651-659. PubMed ID: 31617035 [TBL] [Abstract][Full Text] [Related]
59. Accounting Conformational Dynamics into Structural Modeling Reflected by Cryo-EM with Deep Learning. Ye Q; Zhao Y; Li X; Zhao Y; Fu X; Zhang S; Yang Z; Zhang L Comb Chem High Throughput Screen; 2023; 26(3):449-458. PubMed ID: 35570549 [TBL] [Abstract][Full Text] [Related]
60. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis. Yao XQ; Hamelberg D Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]