These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 39273672)
61. Cryo-EM: A window into the dynamic world of RNA molecules. Zhang X; Li S; Zhang K Curr Opin Struct Biol; 2024 Oct; 88():102916. PubMed ID: 39232250 [TBL] [Abstract][Full Text] [Related]
62. Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Trabuco LG; Villa E; Schreiner E; Harrison CB; Schulten K Methods; 2009 Oct; 49(2):174-80. PubMed ID: 19398010 [TBL] [Abstract][Full Text] [Related]
63. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins. Salvi N; Abyzov A; Blackledge M Angew Chem Int Ed Engl; 2017 Nov; 56(45):14020-14024. PubMed ID: 28834051 [TBL] [Abstract][Full Text] [Related]
64. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Murata K; Wolf M Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):324-334. PubMed ID: 28756276 [TBL] [Abstract][Full Text] [Related]
65. Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters. Kragelj J; Blackledge M; Jensen MR Adv Exp Med Biol; 2015; 870():123-47. PubMed ID: 26387101 [TBL] [Abstract][Full Text] [Related]
66. Predictive modeling and cryo-EM: A synergistic approach to modeling macromolecular structure. Corum MR; Venkannagari H; Hryc CF; Baker ML Biophys J; 2024 Feb; 123(4):435-450. PubMed ID: 38268190 [TBL] [Abstract][Full Text] [Related]
67. State-dependent sequential allostery exhibited by chaperonin TRiC/CCT revealed by network analysis of Cryo-EM maps. Zhang Y; Krieger J; Mikulska-Ruminska K; Kaynak B; Sorzano COS; Carazo JM; Xing J; Bahar I Prog Biophys Mol Biol; 2021 Mar; 160():104-120. PubMed ID: 32866476 [TBL] [Abstract][Full Text] [Related]
68. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction. Lehtivarjo J; Tuppurainen K; Hassinen T; Laatikainen R; Peräkylä M J Biomol NMR; 2012 Mar; 52(3):257-67. PubMed ID: 22314705 [TBL] [Abstract][Full Text] [Related]
69. An automated approach to network features of protein structure ensembles. Bhattacharyya M; Bhat CR; Vishveshwara S Protein Sci; 2013 Oct; 22(10):1399-416. PubMed ID: 23934896 [TBL] [Abstract][Full Text] [Related]
70. Biomolecular NMR spectroscopy in the era of artificial intelligence. Shukla VK; Heller GT; Hansen DF Structure; 2023 Nov; 31(11):1360-1374. PubMed ID: 37848030 [TBL] [Abstract][Full Text] [Related]
71. Integrative Structural Biology in the Era of Accurate Structure Prediction. Masrati G; Landau M; Ben-Tal N; Lupas A; Kosloff M; Kosinski J J Mol Biol; 2021 Oct; 433(20):167127. PubMed ID: 34224746 [TBL] [Abstract][Full Text] [Related]
72. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. Lau C; Hunter MJ; Stewart A; Perozo E; Vandenberg JI J Physiol; 2018 Apr; 596(7):1107-1119. PubMed ID: 29377132 [TBL] [Abstract][Full Text] [Related]
73. NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function. Schanda P; Haran G Annu Rev Biophys; 2024 Jul; 53(1):247-273. PubMed ID: 38346243 [TBL] [Abstract][Full Text] [Related]
74. NMMD: Efficient Cryo-EM Flexible Fitting Based on Simultaneous Normal Mode and Molecular Dynamics atomic displacements. Vuillemot R; Miyashita O; Tama F; Rouiller I; Jonic S J Mol Biol; 2022 Apr; 434(7):167483. PubMed ID: 35150654 [TBL] [Abstract][Full Text] [Related]
75. Predicting protein conformational motions using energetic frustration analysis and AlphaFold2. Guan X; Tang QY; Ren W; Chen M; Wang W; Wolynes PG; Li W Proc Natl Acad Sci U S A; 2024 Aug; 121(35):e2410662121. PubMed ID: 39163334 [TBL] [Abstract][Full Text] [Related]
76. The ribosome and its role in protein folding: looking through a magnifying glass. Javed A; Christodoulou J; Cabrita LD; Orlova EV Acta Crystallogr D Struct Biol; 2017 Jun; 73(Pt 6):509-521. PubMed ID: 28580913 [TBL] [Abstract][Full Text] [Related]
77. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins. Karp JM; Eryilmaz E; Cowburn D J Biomol NMR; 2015 Jan; 61(1):35-45. PubMed ID: 25416617 [TBL] [Abstract][Full Text] [Related]
78. The structural biology of crystallin aggregation: challenges and outlook. Bari KJ FEBS J; 2021 Oct; 288(20):5888-5902. PubMed ID: 33351212 [TBL] [Abstract][Full Text] [Related]
79. Machine-learning-based methods to generate conformational ensembles of disordered proteins. Taneja I; Lasker K Biophys J; 2024 Jan; 123(1):101-113. PubMed ID: 38053335 [TBL] [Abstract][Full Text] [Related]
80. Current Stage and Future Perspectives for Homology Modeling, Molecular Dynamics Simulations, Machine Learning with Molecular Dynamics, and Quantum Computing for Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions. Coskuner-Weber O; Uversky VN Curr Protein Pept Sci; 2024; 25(2):163-171. PubMed ID: 38275091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]