These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39273688)
21. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach. Liu Z; Zhang X; Lei D; Qiao B; Zhao GR Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467 [TBL] [Abstract][Full Text] [Related]
22. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins. Fiege K; Frankenberg-Dinkel N Microb Cell Fact; 2020 Oct; 19(1):190. PubMed ID: 33023596 [TBL] [Abstract][Full Text] [Related]
23. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related]
24. Limited role for the bilirubin-biliverdin redox amplification cycle in the cellular antioxidant protection by biliverdin reductase. Maghzal GJ; Leck MC; Collinson E; Li C; Stocker R J Biol Chem; 2009 Oct; 284(43):29251-9. PubMed ID: 19690164 [TBL] [Abstract][Full Text] [Related]
25. High-level production of L-valine in Escherichia coli using multi-modular engineering. Hao Y; Pan X; Xing R; You J; Hu M; Liu Z; Li X; Xu M; Rao Z Bioresour Technol; 2022 Sep; 359():127461. PubMed ID: 35700900 [TBL] [Abstract][Full Text] [Related]
26. Metabolic engineering of Escherichia coli for efficient biosynthesis of fluorescent phycobiliprotein. Chen H; Jiang P Microb Cell Fact; 2019 Mar; 18(1):58. PubMed ID: 30894191 [TBL] [Abstract][Full Text] [Related]
27. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress. Muhsain SN; Lang MA; Abu-Bakar A Toxicol Appl Pharmacol; 2015 Jan; 282(1):77-89. PubMed ID: 25478736 [TBL] [Abstract][Full Text] [Related]
28. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291 [TBL] [Abstract][Full Text] [Related]
29. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW; Kim WJ; Lee SY ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230 [TBL] [Abstract][Full Text] [Related]
30. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli. Liu CL; Dong HG; Zhan J; Liu X; Yang Y J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788 [TBL] [Abstract][Full Text] [Related]
31. Increasing Agmatine Production in Xu D; Zhang L J Agric Food Chem; 2019 Jul; 67(28):7908-7915. PubMed ID: 31268314 [TBL] [Abstract][Full Text] [Related]
32. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219 [TBL] [Abstract][Full Text] [Related]
33. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin. Jansen T; Hortmann M; Oelze M; Opitz B; Steven S; Schell R; Knorr M; Karbach S; Schuhmacher S; Wenzel P; Münzel T; Daiber A J Mol Cell Cardiol; 2010 Aug; 49(2):186-95. PubMed ID: 20430037 [TBL] [Abstract][Full Text] [Related]
34. Redox Functions of Heme Oxygenase-1 and Biliverdin Reductase in Diabetes. Rochette L; Zeller M; Cottin Y; Vergely C Trends Endocrinol Metab; 2018 Feb; 29(2):74-85. PubMed ID: 29249571 [TBL] [Abstract][Full Text] [Related]
35. Construction of an L-serine producing Escherichia coli via metabolic engineering. Gu P; Yang F; Su T; Li F; Li Y; Qi Q J Ind Microbiol Biotechnol; 2014 Sep; 41(9):1443-50. PubMed ID: 24997624 [TBL] [Abstract][Full Text] [Related]
36. Isolation and characterization of a cDNA from soybean and its homolog from Escherichia coli, which both complement the light sensitivity of Escherichia coli hemH mutant strain VS101. Kanjo N; Nakahigashi K; Oeda K; Inokuchi H Genes Genet Syst; 2001 Oct; 76(5):327-34. PubMed ID: 11817648 [TBL] [Abstract][Full Text] [Related]
37. Investigation of the potential modulatory effect of biliverdin, carbon monoxide and bilirubin on nitrergic neurotransmission in the pig gastric fundus. Colpaert EE; Timmermans JP; Lefebvre RA Eur J Pharmacol; 2002 Dec; 457(2-3):177-86. PubMed ID: 12464364 [TBL] [Abstract][Full Text] [Related]
38. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. Zhu T; Yao D; Li D; Xu H; Jia S; Bi C; Cai J; Zhu X; Zhang X Biotechnol Bioeng; 2021 Dec; 118(12):4699-4707. PubMed ID: 34491579 [TBL] [Abstract][Full Text] [Related]
39. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Kwon SJ; de Boer AL; Petri R; Schmidt-Dannert C Appl Environ Microbiol; 2003 Aug; 69(8):4875-83. PubMed ID: 12902282 [TBL] [Abstract][Full Text] [Related]
40. Purification and characterization of heme oxygenase from chick liver. Comparison of the avian and mammalian enzymes. Bonkovsky HL; Healey JF; Pohl J Eur J Biochem; 1990 Apr; 189(1):155-66. PubMed ID: 2158889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]