These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39273688)
41. [Metabolic engineering of the substrate utilization pathway in Xu X; Wang H; Chen X; Wu J; Gao C; Song W; Wei W; Liu J; Liu Y; Liu L Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2513-2527. PubMed ID: 39174468 [TBL] [Abstract][Full Text] [Related]
42. Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies. Jiang P; Fang H; Zhao J; Dong H; Jin Z; Zhang D Microb Cell Fact; 2020 Jun; 19(1):118. PubMed ID: 32487216 [TBL] [Abstract][Full Text] [Related]
43. Engineering Redox Cofactor Balance for Improved 5-Methyltetrahydrofolate Production in Yang J; Wu Y; Lv X; Liu L; Li J; Du G; Liu Y J Agric Food Chem; 2024 May; 72(17):9974-9983. PubMed ID: 38625685 [TBL] [Abstract][Full Text] [Related]
44. Abortive assembly of succinate-ubiquinone reductase (complex II) in a ferrochelatase-deficient mutant of Escherichia coli. Nihei C; Nakayashiki T; Nakamura K; Inokuchi H; Gennis RB; Kojima S; Kita K Mol Genet Genomics; 2001 May; 265(3):394-404. PubMed ID: 11405622 [TBL] [Abstract][Full Text] [Related]
45. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering. Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175 [TBL] [Abstract][Full Text] [Related]
46. Human biliverdin IXalpha reductase is a zinc-metalloprotein. Characterization of purified and Escherichia coli expressed enzymes. Maines MD; Polevoda BV; Huang TJ; McCoubrey WK Eur J Biochem; 1996 Jan; 235(1-2):372-81. PubMed ID: 8631357 [TBL] [Abstract][Full Text] [Related]
47. Non-iron porphyrins cause tumbling to blue light by an Escherichia coli mutant defective in hemG. Yang H; Sasarman A; Inokuchi H; Adler J Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2459-63. PubMed ID: 8637896 [TBL] [Abstract][Full Text] [Related]
48. Pathway Engineering for Phenethylamine Production in Xu D; Zhang L J Agric Food Chem; 2020 May; 68(21):5917-5926. PubMed ID: 32367713 [TBL] [Abstract][Full Text] [Related]
49. Modular engineering of L-tyrosine production in Escherichia coli. Juminaga D; Baidoo EE; Redding-Johanson AM; Batth TS; Burd H; Mukhopadhyay A; Petzold CJ; Keasling JD Appl Environ Microbiol; 2012 Jan; 78(1):89-98. PubMed ID: 22020510 [TBL] [Abstract][Full Text] [Related]
50. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production. Zhang J; Kang Z; Ding W; Chen J; Du G Appl Biochem Biotechnol; 2016 Mar; 178(6):1252-62. PubMed ID: 26637361 [TBL] [Abstract][Full Text] [Related]
51. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose. Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615 [TBL] [Abstract][Full Text] [Related]
52. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli. Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178 [TBL] [Abstract][Full Text] [Related]
53. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. Lee MJ; Kim HJ; Lee JY; Kwon AS; Jun SY; Kang SH; Kim P J Microbiol Biotechnol; 2013 May; 23(5):668-73. PubMed ID: 23648857 [TBL] [Abstract][Full Text] [Related]
54. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Flores S; de Anda-Herrera R; Gosset G; Bolívar FG Biotechnol Bioeng; 2004 Aug; 87(4):485-94. PubMed ID: 15286986 [TBL] [Abstract][Full Text] [Related]
55. Metabolic engineering of Escherichia coli for efficient production of L-arginine. Wang HD; Xu JZ; Zhang WG Appl Microbiol Biotechnol; 2022 Sep; 106(17):5603-5613. PubMed ID: 35931894 [TBL] [Abstract][Full Text] [Related]
56. Increasing the catalytic activity of Bilirubin oxidase from Bacillus pumilus: Importance of host strain and chaperones proteins. Gounel S; Rouhana J; Stines-Chaumeil C; Cadet M; Mano N J Biotechnol; 2016 Jul; 230():19-25. PubMed ID: 27165502 [TBL] [Abstract][Full Text] [Related]
57. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on heme oxygenase-1, biliverdin IXalpha reductase and delta-aminolevulinic acid synthetase 1 in rats with wild-type or variant AH receptor. Niittynen M; Tuomisto JT; Pohjanvirta R Toxicology; 2008 Sep; 250(2-3):132-42. PubMed ID: 18657588 [TBL] [Abstract][Full Text] [Related]
58. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Zhang J; Weng H; Zhou Z; Du G; Kang Z Bioresour Technol; 2019 Feb; 274():353-360. PubMed ID: 30537593 [TBL] [Abstract][Full Text] [Related]
59. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture. Yuan SF; Yi X; Johnston TG; Alper HS Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999 [TBL] [Abstract][Full Text] [Related]
60. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]