These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 39274171)
1. A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding. Nan X; Zhang Y; Shen J; Liang R; Wang J; Jia L; Yang X; Yu W; Zhang Z Polymers (Basel); 2024 Sep; 16(17):. PubMed ID: 39274171 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of Electromagnetic Interference Shielding Performance and Wear Resistance of the UHMWPE/PP Blend by Constructing a Segregated Hybrid Conductive Carbon Black-Polymer Network. Cheng H; Cao C; Zhang Q; Wang Y; Liu Y; Huang B; Sun XL; Guo Y; Xiao L; Chen Q; Qian Q ACS Omega; 2021 Jun; 6(23):15078-15088. PubMed ID: 34151088 [TBL] [Abstract][Full Text] [Related]
3. Structural design and preparation of Ti Zhang Q; Wang Q; Cui J; Zhao S; Zhang G; Gao A; Yan Y Nanoscale Adv; 2023 Jul; 5(14):3549-3574. PubMed ID: 37441247 [TBL] [Abstract][Full Text] [Related]
4. Polyvinylpyrrolidone Assisted Preparation of Highly Conductive, Antioxidation, and Durable Nanofiber Composite with an Extremely High Electromagnetic Interference Shielding Effectiveness. Zhang S; Huang X; Xiao W; Zhang L; Yao H; Wang L; Luo J; Gao J ACS Appl Mater Interfaces; 2021 May; 13(18):21865-21875. PubMed ID: 33913685 [TBL] [Abstract][Full Text] [Related]
5. Greatly Enhanced Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Polyaniline-Grafted Ti Habibpour S; Zarshenas K; Zhang M; Hamidinejad M; Ma L; Park CB; Yu A ACS Appl Mater Interfaces; 2022 May; 14(18):21521-21534. PubMed ID: 35483099 [TBL] [Abstract][Full Text] [Related]
6. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. Wu Y; Wang Z; Liu X; Shen X; Zheng Q; Xue Q; Kim JK ACS Appl Mater Interfaces; 2017 Mar; 9(10):9059-9069. PubMed ID: 28224798 [TBL] [Abstract][Full Text] [Related]
7. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Zhang Z; Hu L; Wang R; Zhang S; Fu L; Li M; Xiao Q Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399924 [TBL] [Abstract][Full Text] [Related]
8. Review of Polymer-Based Composites for Electromagnetic Shielding Application. Wang Y; Zhao W; Tan L; Li Y; Qin L; Li S Molecules; 2023 Jul; 28(15):. PubMed ID: 37570598 [TBL] [Abstract][Full Text] [Related]
9. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Wang Y; Gu FQ; Ni LJ; Liang K; Marcus K; Liu SL; Yang F; Chen JJ; Feng ZS Nanoscale; 2017 Nov; 9(46):18318-18325. PubMed ID: 29143001 [TBL] [Abstract][Full Text] [Related]
10. Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications. Antunes M Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256994 [TBL] [Abstract][Full Text] [Related]
11. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Mondal S; Ganguly S; Rahaman M; Aldalbahi A; Chaki TK; Khastgir D; Das NCh Phys Chem Chem Phys; 2016 Sep; 18(35):24591-9. PubMed ID: 27539886 [TBL] [Abstract][Full Text] [Related]
12. Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding. Zhao Y; Li C; Lang T; Gao J; Zhang H; Zhao Y; Guo Z; Miao Z Molecules; 2023 Nov; 28(22):. PubMed ID: 38005369 [TBL] [Abstract][Full Text] [Related]
14. Highly Flexible Fabrics/Epoxy Composites with Hybrid Carbon Nanofillers for Absorption-Dominated Electromagnetic Interference Shielding. Lee JH; Kim YS; Ru HJ; Lee SY; Park SJ Nanomicro Lett; 2022 Sep; 14(1):188. PubMed ID: 36114884 [TBL] [Abstract][Full Text] [Related]
15. Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. Orasugh JT; Temane LT; Ray SS Int J Biol Macromol; 2024 Oct; 277(Pt 1):133891. PubMed ID: 39025190 [TBL] [Abstract][Full Text] [Related]
17. Influence of Conductive Filler Types on the Ratio of Reflection and Absorption Properties in Cement-Based EMI Shielding Composites. Jang D; Park J; Jang W; Bang J; Kim GM; Choi J; Seo J; Yang B Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410484 [TBL] [Abstract][Full Text] [Related]
18. Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review. Karim SS; Murtaza Z; Farrukh S; Umer MA; Ali SS; Younas M; Mubashir M; Saqib S; Ayoub M; Bokhari A; Peter AP; Khoo KS; Ullah S; Show PL Environ Res; 2022 Apr; 205():112402. PubMed ID: 34838569 [TBL] [Abstract][Full Text] [Related]
19. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review. Liang C; Gu Z; Zhang Y; Ma Z; Qiu H; Gu J Nanomicro Lett; 2021 Aug; 13(1):181. PubMed ID: 34406529 [TBL] [Abstract][Full Text] [Related]
20. Impact of polymer matrix on the electromagnetic interference shielding performance for single-walled carbon nanotubes-based composites. Liang J; Huang Y; Li N; Bai G; Liu Z; Du F; Li F; Ma Y; Chen Y J Nanosci Nanotechnol; 2013 Feb; 13(2):1120-4. PubMed ID: 23646584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]