These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39274664)
1. Inverse Identification of Constitutive Model for GH4198 Based on Genetic-Particle Swarm Algorithm. Jin Q; Li J; Li F; Fu R; Yu H; Guo L Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274664 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity Analysis of Johnson-Cook Material Constants and Friction Coefficient Influence on Finite Element Simulation of Turning Inconel 718. Qiu X; Cheng X; Dong P; Peng H; Xing Y; Zhou X Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31557806 [TBL] [Abstract][Full Text] [Related]
3. Parameter identification of Johnson-Cook constitutive model based on genetic algorithm and simulation analysis for 304 stainless steel. Jiang X; Ding J; Wang C; Shiju E; Hong L; Yao W; Wang H; Zhou C; Yu W Sci Rep; 2024 Sep; 14(1):21221. PubMed ID: 39261555 [TBL] [Abstract][Full Text] [Related]
4. Thermo⁻Mechanical Behavior and Constitutive Modeling of In Situ TiB Lin K; Wang W; Jiang R; Xiong Y; Shan C Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013881 [TBL] [Abstract][Full Text] [Related]
5. Research on Johnson-Cook Constitutive Model of γ-TiAl Alloy with Improved Parameters. Shi L; Wang T; Wang L; Liu E Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895697 [TBL] [Abstract][Full Text] [Related]
6. Constitutive Model Parameter Identification Based on Optimization Method and Formability Analysis for Ti6Al4V Alloy. Chen X; Zhang B; Du Y; Liu M; Bai R; Si Y; Liu B; Jung DW; Osaka A Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268978 [TBL] [Abstract][Full Text] [Related]
7. Genetic-Algorithm-Based Inverse Optimization Identification Method for Hot-Temperature Constitutive Model Parameters of Ti6Al4V Alloy. Chen X; Su Z; Sun J; Yang Z; Zhang B; Zhou Z Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445038 [TBL] [Abstract][Full Text] [Related]
8. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718. Wang B; Liu Z; Hou X; Zhao J Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29561770 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB₂/7050Al MMC. Xiong Y; Wang W; Jiang R; Lin K; Shao M Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29662047 [TBL] [Abstract][Full Text] [Related]
10. Subroutine Embedding and Finite Element Simulation of the Improved Constitutive Equation for Ti6Al4V during High-Speed Machining. Liu L; Wu W; Zhao Y; Cheng Y Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176226 [TBL] [Abstract][Full Text] [Related]
11. Dynamic Mechanical Properties and Modified Material Constitutive Model for Hot Forged Ti Li L; Pan X; Zhang Y; Mu J; Zhao J; Dong X; Liu Z Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893836 [TBL] [Abstract][Full Text] [Related]
12. Constitutive Model and Cutting Simulation of Titanium Alloy Ti6Al4V after Heat Treatment. Qian X; Duan X Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835657 [TBL] [Abstract][Full Text] [Related]
13. The Comparation of Arrhenius-Type and Modified Johnson-Cook Constitutive Models at Elevated Temperature for Annealed TA31 Titanium Alloy. Yang S; Liang P; Gao F; Song D; Jiang P; Zhao M; Kong N Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614619 [TBL] [Abstract][Full Text] [Related]
14. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model. Xie Z; Guan Y; Lin J; Zhai J; Zhu L Ultrasonics; 2019 Jul; 96():1-9. PubMed ID: 30939387 [TBL] [Abstract][Full Text] [Related]
15. The Parameters Identification of High-Temperature Constitutive Model Based on Inverse Optimization Method and 3D Processing Map of Cr8 Alloy Steel. Chen X; Lian T; Zhang B; Du Y; Du K; Liu B; Li Z; Tian X; Jung DW Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925819 [TBL] [Abstract][Full Text] [Related]
16. A Joint Johnson-Cook-TANH Constitutive Law for Modeling Saw-Tooth Chip Formation of Ti-6AL-4V Based on an Improved Smoothed Particle Hydrodynamics Method. Niu W; Wang Y; Li X; Guo R Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374648 [TBL] [Abstract][Full Text] [Related]
17. Thermomechanical Simulation of Orthogonal Metal Cutting with PFEM and SPH Using a Temperature-Dependent Friction Coefficient: A Comparative Study. Rodríguez Prieto JM; Larsson S; Afrasiabi M Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241329 [TBL] [Abstract][Full Text] [Related]
18. Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V. Rodríguez JM; Larsson S; Carbonell JM; Jonsén P Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344739 [TBL] [Abstract][Full Text] [Related]
19. Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm. Xu X; Lin P PLoS One; 2021; 16(5):e0250950. PubMed ID: 33945538 [TBL] [Abstract][Full Text] [Related]
20. Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone. Remache D; Semaan M; Rossi JM; Pithioux M; Milan JL J Mech Behav Biomed Mater; 2020 Jan; 101():103426. PubMed ID: 31557661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]