These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 39274701)
1. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys. Meng F; Du Y Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274701 [TBL] [Abstract][Full Text] [Related]
2. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Qin Y; Wen P; Guo H; Xia D; Zheng Y; Jauer L; Poprawe R; Voshage M; Schleifenbaum JH Acta Biomater; 2019 Oct; 98():3-22. PubMed ID: 31029830 [TBL] [Abstract][Full Text] [Related]
3. Laser Additive Manufacturing of Zinc Targeting for Biomedical Application. Zhou Y; Wang J; Yang Y; Yang M; Zheng H; Xie D; Wang D; Shen L Int J Bioprint; 2022; 8(1):501. PubMed ID: 35187283 [TBL] [Abstract][Full Text] [Related]
4. Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Qin Y; Yang H; Liu A; Dai J; Wen P; Zheng Y; Tian Y; Li S; Wang X Acta Biomater; 2022 Apr; 142():388-401. PubMed ID: 35085796 [TBL] [Abstract][Full Text] [Related]
5. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications. Lietaert K; Zadpoor AA; Sonnaert M; Schrooten J; Weber L; Mortensen A; Vleugels J Acta Biomater; 2020 Jul; 110():289-302. PubMed ID: 32348917 [TBL] [Abstract][Full Text] [Related]
7. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
9. A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications. Wang X; Zhang D; Li A; Yi D; Li T Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893817 [TBL] [Abstract][Full Text] [Related]
10. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach. Sharma SK; Grewal HS; Saxena KK; Mohammed KA; Prakash C; Davim JP; Buddhi D; Raju R; Mohan DG; Tomków J Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431608 [TBL] [Abstract][Full Text] [Related]
11. Comparison on the Electrochemical Corrosion Behavior of Ti6Al4V Alloys Fabricated by Laser Powder Bed Fusion and Casting. Zhan Z; Zhang Q; Wang S; Liu X; Zhang H; Sun Z; Ge Y; Du N Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998403 [TBL] [Abstract][Full Text] [Related]
12. Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal. Qin Y; Liu J; Chen Y; Wen P; Zheng Y; Tian Y; Voshage M; Schleifenbaum JH Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065320 [TBL] [Abstract][Full Text] [Related]
13. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process. Haase F; Siemers C; Rösler J Front Bioeng Biotechnol; 2023; 11():1260925. PubMed ID: 37744262 [TBL] [Abstract][Full Text] [Related]
14. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Zheng Y; Huang C; Li Y; Gao J; Yang Y; Zhao S; Che H; Yang Y; Yao S; Li W; Zhou J; Zadpoor AA; Wang L Acta Biomater; 2024 Jul; 182():139-155. PubMed ID: 38750914 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Properties of Bulk Metallic Glasses Additively Manufactured by Laser Powder Bed Fusion: A Review. Luo H; Du Y Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959631 [TBL] [Abstract][Full Text] [Related]
16. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion. Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684 [TBL] [Abstract][Full Text] [Related]
17. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Zhao D; Han C; Peng B; Cheng T; Fan J; Yang L; Chen L; Wei Q Acta Biomater; 2022 Nov; 153():614-629. PubMed ID: 36162767 [TBL] [Abstract][Full Text] [Related]
18. Additive manufacturing of NiTi shape memory alloy and its industrial applications. Dzogbewu TC; de Beer DJ Heliyon; 2024 Jan; 10(1):e23369. PubMed ID: 38163186 [TBL] [Abstract][Full Text] [Related]
19. Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion. Xi L; Lu Q; Gu D; Cao S; Zhang H; Kaban I; Sarac B; Prashanth KG; Eckert J 3D Print Addit Manuf; 2024 Apr; 11(2):e731-e742. PubMed ID: 38689899 [TBL] [Abstract][Full Text] [Related]
20. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size. Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]