These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39274712)
1. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation. Myronyuk O; Vanagas E; Rodin AM; Wesolowski M Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274712 [TBL] [Abstract][Full Text] [Related]
2. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717 [TBL] [Abstract][Full Text] [Related]
3. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces. Kuznetsov GV; Feoktistov DV; Orlova EG; Zykov IY; Islamova AG J Colloid Interface Sci; 2019 Oct; 553():557-566. PubMed ID: 31238226 [TBL] [Abstract][Full Text] [Related]
4. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
5. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
6. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
9. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659 [TBL] [Abstract][Full Text] [Related]
10. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
11. The Cassie equation: how it is meant to be used. Milne AJ; Amirfazli A Adv Colloid Interface Sci; 2012 Jan; 170(1-2):48-55. PubMed ID: 22257682 [TBL] [Abstract][Full Text] [Related]
12. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. McHale G; Orme BV; Wells GG; Ledesma-Aguilar R Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342 [TBL] [Abstract][Full Text] [Related]
13. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
14. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces. Di Mundo R; Palumbo F; d'Agostino R Langmuir; 2010 Apr; 26(7):5196-201. PubMed ID: 19950937 [TBL] [Abstract][Full Text] [Related]
15. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces. Murakami D; Jinnai H; Takahara A Langmuir; 2014 Mar; 30(8):2061-7. PubMed ID: 24494786 [TBL] [Abstract][Full Text] [Related]
16. Cassie's Law Reformulated: Composite Surfaces from Superspreading to Superhydrophobic. McHale G; Ledesma-Aguilar R; Neto C Langmuir; 2023 Aug; 39(31):11028-11035. PubMed ID: 37487028 [TBL] [Abstract][Full Text] [Related]
17. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
18. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles. McHale G; Newton MI; Shirtcliffe NJ; Geraldi NR Beilstein J Nanotechnol; 2011; 2():145-51. PubMed ID: 21977426 [TBL] [Abstract][Full Text] [Related]
19. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets. Zahiri B; Sow PK; Kung CH; Mérida W J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883 [TBL] [Abstract][Full Text] [Related]
20. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory. Jiang G; Hu J; Chen L Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]