These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39274849)
1. Aggression to Biomembranes by Hydrophobic Tail Chains under the Stimulus of Reductant. Wang S; Xu H; Li Y; Zhang L; Xu S Molecules; 2024 Aug; 29(17):. PubMed ID: 39274849 [TBL] [Abstract][Full Text] [Related]
2. pH/Redox-Controlled Interaction between Lipid Membranes and Peptide Derivatives with a "Helmet". Li M; Wang S; Xu J; Xu S; Liu H J Phys Chem B; 2019 Aug; 123(31):6784-6791. PubMed ID: 31306021 [TBL] [Abstract][Full Text] [Related]
3. Novel Peptide-Polymer Conjugate with pH-Responsive Targeting/Disrupting Effects on Biomembranes. Wang S; Sun Y; Xu S; Liu H Langmuir; 2021 Jul; 37(29):8840-8846. PubMed ID: 34264682 [TBL] [Abstract][Full Text] [Related]
4. Interactions of model human pulmonary surfactants with a mixed phospholipid bilayer assembly: Raman spectroscopic studies. Vincent JS; Revak SD; Cochrane CD; Levin IW Biochemistry; 1993 Aug; 32(32):8228-38. PubMed ID: 8347622 [TBL] [Abstract][Full Text] [Related]
5. [Interaction of lactoferrin and its peptides with DPPC and DPPG liposomes studied by Raman spectroscopy]. Zhang W; Ren FZ; Ge SY; Zhang LD; Jiang L; Mao XY; Guo HY Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1533-6. PubMed ID: 21847927 [TBL] [Abstract][Full Text] [Related]
6. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
7. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Kiyota T; Lee S; Sugihara G Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958 [TBL] [Abstract][Full Text] [Related]
8. Disruption of Tumor Cells Using a pH-Activated and Thermosensitive Antitumor Lipopeptide Containing a Leucine Zipper Structure. Wang S; Wang T; Zhang J; Xu S; Liu H Langmuir; 2018 Jul; 34(30):8818-8827. PubMed ID: 29914261 [TBL] [Abstract][Full Text] [Related]
9. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor. Wang G; Li Y; Li X J Biol Chem; 2005 Feb; 280(7):5803-11. PubMed ID: 15572363 [TBL] [Abstract][Full Text] [Related]
10. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774 [TBL] [Abstract][Full Text] [Related]
11. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Henriques ST; Costa J; Castanho MA Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396 [TBL] [Abstract][Full Text] [Related]
12. Bilayer disruption and liposome restructuring by a homologous series of small Arg-rich synthetic peptides. Ye G; Gupta A; DeLuca R; Parang K; Bothun GD Colloids Surf B Biointerfaces; 2010 Mar; 76(1):76-81. PubMed ID: 19913394 [TBL] [Abstract][Full Text] [Related]
13. Interaction of the cholesterol reducing agent simvastatin with zwitterionic DPPC and charged DPPG phospholipid membranes. Sariisik E; Koçak M; Kucuk Baloglu F; Severcan F Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):810-818. PubMed ID: 30707888 [TBL] [Abstract][Full Text] [Related]
14. Effect of hydrophobic surfactant proteins SP-B and SP-C on binary phospholipid monolayers: II. Infrared external reflectance-absorption spectroscopy. Brockman JM; Wang Z; Notter RH; Dluhy RA Biophys J; 2003 Jan; 84(1):326-40. PubMed ID: 12524286 [TBL] [Abstract][Full Text] [Related]
15. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
16. Influence of resveratrol on interactions between negatively charged DPPC/DPPG membranes and positively charged poly-l-lysine. Cieślik-Boczula K Chem Phys Lipids; 2018 Aug; 214():24-34. PubMed ID: 29842874 [TBL] [Abstract][Full Text] [Related]
17. Membrane structure and interactions of peptide hormones with model lipid bilayers. Sikorska E; Iłowska E; Wyrzykowski D; Kwiatkowska A Biochim Biophys Acta; 2012 Dec; 1818(12):2982-93. PubMed ID: 22824299 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of basic peptides having amphipathic beta-structure and their interaction with phospholipid membranes. Ono S; Lee S; Mihara H; Aoyagi H; Kato T; Yamasaki N Biochim Biophys Acta; 1990 Feb; 1022(2):237-44. PubMed ID: 2306456 [TBL] [Abstract][Full Text] [Related]
19. A thermodynamic signature of lipid segregation in biomembranes induced by a short peptide derived from glycoprotein gp36 of feline immunodeficiency virus. Oliva R; Del Vecchio P; Stellato MI; D'Ursi AM; D'Errico G; Paduano L; Petraccone L Biochim Biophys Acta; 2015 Feb; 1848(2):510-7. PubMed ID: 25450811 [TBL] [Abstract][Full Text] [Related]
20. The effects of radioprotectant and potential antioxidant agent amifostine on the structure and dynamics of DPPC and DPPG liposomes. Cakmak Arslan G; Severcan F Biochim Biophys Acta Biomembr; 2019 Jun; 1861(6):1240-1251. PubMed ID: 31028720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]