These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39277400)

  • 1. Plant-derived citronellol can significantly disrupt cell wall integrity maintenance of Colletotrichum camelliae.
    Zhang J; Liu H; Yao J; Ma C; Yang W; Lei Z; Li R
    Pestic Biochem Physiol; 2024 Sep; 204():106087. PubMed ID: 39277400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First report of leaf anthracnose caused by
    Hassan O; Kim SH; Kim KM; Chang T
    Plant Dis; 2023 Apr; ():. PubMed ID: 37018215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pseudolaric acid B on biochemical and physiologic characteristics in Colletotrichum gloeosporioides.
    Zhang J; Han RY; Ye HC; Zhou Y; Zhang ZK; Yuan EL; Li Y; Yan C; Liu X; Feng G; Guo YX
    Pestic Biochem Physiol; 2018 May; 147():75-82. PubMed ID: 29933996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango.
    Tang L; Mo J; Guo T; Huang S; Li Q; Ning P; Hsiang T
    World J Microbiol Biotechnol; 2019 Dec; 36(1):4. PubMed ID: 31832786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of Rhizoctonia solani.
    Xiang Y; Zhang Y; Wang C; Liu S; Liao X
    Pestic Biochem Physiol; 2018 May; 147():32-39. PubMed ID: 29933990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First Report of Anthracnose Caused by
    Sun L; Wu S; Lu Y; Wu F; Chen X
    Plant Dis; 2023 Mar; ():. PubMed ID: 36880860
    [No Abstract]   [Full Text] [Related]  

  • 7. Biocontrol potential of Bacillus velezensis HG-8-2 against postharvest anthracnose on chili pepper caused by Colletotrichum scovillei.
    Zhong J; Wu X; Guo R; Li J; Li X; Zhu J
    Food Microbiol; 2024 Dec; 124():104613. PubMed ID: 39244365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal activity of compounds extracted from Cortex Pseudolaricis against Colletotrichum gloeosporioides.
    Zhang J; Yan LT; Yuan EL; Ding HX; Ye HC; Zhang ZK; Yan C; Liu YQ; Feng G
    J Agric Food Chem; 2014 May; 62(21):4905-10. PubMed ID: 24820992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of anthracnose disease by orsellinaldehyde isolated from the mushroom Coprinus comatus.
    Cabutaje EM; Ueno K; Dela Cruz TEE; Ishihara A
    J Appl Microbiol; 2024 Jun; 135(6):. PubMed ID: 38802124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity and biochemical action of the antibiotic fungicide tetramycin on Colletotrichum scovillei.
    Gao Y; He L; Li X; Lin J; Mu W; Liu F
    Pestic Biochem Physiol; 2018 May; 147():51-58. PubMed ID: 29933993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of Reliable Reference Genes for RT-qPCR Studies of Target Gene Expression in
    He S; An T; A R; Liu S
    Front Microbiol; 2019; 10():2055. PubMed ID: 31551988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal activity of plant extracts against Colletotrichum lagenarium, the causal agent of anthracnose in cucumber.
    Chen Y; Dai G
    J Sci Food Agric; 2012 Jul; 92(9):1937-43. PubMed ID: 22246784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins.
    de Oliveira KÁR; Berger LRR; de Araújo SA; Câmara MPS; de Souza EL
    Food Microbiol; 2017 Sep; 66():96-103. PubMed ID: 28576378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a DNA-based real-time PCR assay for the quantification of
    He S; Chen H; Wei Y; An T; Liu S
    Plant Methods; 2020; 16():17. PubMed ID: 32095156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, characterisation and efficacy evaluation of biochemical fungicidal formulations for postharvest control of anthracnose (
    Kumar A; Kudachikar VB
    J Microencapsul; 2019 Jan; 36(1):83-95. PubMed ID: 30920322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postharvest control of anthracnose lesions and its causative agent, Colletotrichum musae by some oils.
    Rizwana H
    Cell Mol Biol (Noisy-le-grand); 2018 Mar; 64(4):52-58. PubMed ID: 29641375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of
    Wang Y; Chen JY; Xu X; Cheng J; Zheng L; Huang J; Li DW
    Plant Dis; 2020 Feb; 104(2):474-482. PubMed ID: 31790642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol potential of endophytic bacterium
    Wu Y; Tan Y; Peng Q; Xiao Y; Xie J; Li Z; Ding H; Pan H; Wei L
    PeerJ; 2024; 12():e16761. PubMed ID: 38223761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose.
    Alijani Z; Amini J; Ashengroph M; Bahramnejad B
    Int J Food Microbiol; 2019 Oct; 307():108276. PubMed ID: 31408741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JA-Ile-macrolactone 5b Induces Tea Plant (
    Lin S; Dong Y; Li X; Xing Y; Liu M; Sun X
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.