These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39277918)

  • 1. Size-tunable transmembrane nanopores assembled from decomposable molecular templates.
    Su Z; Chen T; Liu X; Kang X
    Biosens Bioelectron; 2024 Sep; 267():116780. PubMed ID: 39277918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally Active Synthetic α-Helical Pores.
    Krishnan R S; Firzan Ca N; Mahendran KR
    Acc Chem Res; 2024 Jul; 57(13):1790-1802. PubMed ID: 38875523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single polypeptide detection using a translocon EXP2 nanopore.
    Miyagi M; Takiguchi S; Hakamada K; Yohda M; Kawano R
    Proteomics; 2022 Mar; 22(5-6):e2100070. PubMed ID: 34411416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monodisperse transmembrane α-helical peptide barrel.
    Mahendran KR; Niitsu A; Kong L; Thomson AR; Sessions RB; Woolfson DN; Bayley H
    Nat Chem; 2017 May; 9(5):411-419. PubMed ID: 28430192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA.
    Xing Y; Dorey A; Howorka S
    Adv Mater; 2023 Jul; 35(29):e2300589. PubMed ID: 37029712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Free Expression of
    Fujita S; Kawamura I; Kawano R
    ACS Nano; 2023 Feb; 17(4):3358-3367. PubMed ID: 36731872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological nanopores for sensing applications.
    Zhang M; Chen C; Zhang Y; Geng J
    Proteins; 2022 Oct; 90(10):1786-1799. PubMed ID: 35092317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of alpha-helical transmembrane pores through an intermediate state.
    Puthumadathil N; Krishnan R S; Nair GS; Mahendran KR
    Nanoscale; 2022 May; 14(17):6507-6517. PubMed ID: 35420118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building Synthetic Transmembrane Peptide Pores.
    Mahendran KR
    Methods Mol Biol; 2021; 2186():19-32. PubMed ID: 32918727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly.
    Fennouri A; List J; Ducrey J; Dupasquier J; Sukyte V; Mayer SF; Vargas RD; Pascual Fernandez L; Bertani F; Rodriguez Gonzalo S; Yang J; Mayer M
    ACS Nano; 2021 Jul; 15(7):11263-11275. PubMed ID: 34128638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization.
    Cressiot B; Greive SJ; Si W; Pascoa TC; Mojtabavi M; Chechik M; Jenkins HT; Lu X; Zhang K; Aksimentiev A; Antson AA; Wanunu M
    ACS Nano; 2017 Dec; 11(12):11931-11945. PubMed ID: 29120602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule sensing by nanopores and nanopore devices.
    Gu LQ; Shim JW
    Analyst; 2010 Mar; 135(3):441-51. PubMed ID: 20174694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-Hederin Nanopore for Single Nucleotide Discrimination.
    Jeong KB; Luo K; Lee H; Lim MC; Yu J; Choi SJ; Kim KB; Jeon TJ; Kim YR
    ACS Nano; 2019 Feb; 13(2):1719-1727. PubMed ID: 30657663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Interactions of Cyclic Oligosaccharides with Hetero-Oligomeric Nanopores: Kinetics of Binding and Release at the Single-Molecule Level.
    Satheesan R; R SK; Mahendran KR
    Small; 2018 Aug; 14(32):e1801192. PubMed ID: 30009552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-Dependent Single-Molecule DNA Sensing Using Covalent Organic Framework Nanopores.
    Guo L; Xing XL; Liao Q; Xu H; Li W; Ding XL; Xia XH; Ji LN; Xi K; Wang K
    ACS Nano; 2024 Sep; ():. PubMed ID: 39257382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide.
    Shimizu K; Mijiddorj B; Usami M; Mizoguchi I; Yoshida S; Akayama S; Hamada Y; Ohyama A; Usui K; Kawamura I; Kawano R
    Nat Nanotechnol; 2022 Jan; 17(1):67-75. PubMed ID: 34811552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sculpting conducting nanopore size and shape through de novo protein design.
    Berhanu S; Majumder S; Müntener T; Whitehouse J; Berner C; Bera AK; Kang A; Liang B; Khan N; Sankaran B; Tamm LK; Brockwell DJ; Hiller S; Radford SE; Baker D; Vorobieva AA
    Science; 2024 Jul; 385(6706):282-288. PubMed ID: 39024453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH.
    Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G
    ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.