These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 39278837)

  • 1. Non-Noble Metal Catalysts for Electrooxidation of 5-Hydroxymethylfurfural.
    Duan Y; Lu X; Fan O; Xu H; Zhang Z; Si C; Xu T; Du H; Li X
    ChemSusChem; 2024 Sep; ():e202401487. PubMed ID: 39278837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural.
    Xu H; Li X; Hu W; Yu Z; Zhou H; Zhu Y; Lu L; Si C
    ChemSusChem; 2022 Jul; 15(13):e202200352. PubMed ID: 35575041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Electrooxidation of 5-Hydroxymethylfurfural Using Co-Doped Ni
    Sun Y; Wang J; Qi Y; Li W; Wang C
    Adv Sci (Weinh); 2022 Jun; 9(17):e2200957. PubMed ID: 35426484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paired electrocatalysis in 5-hydroxymethylfurfural valorization.
    Qu D; He S; Chen L; Ye Y; Ge Q; Cong H; Jiang N; Ha Y
    Front Chem; 2022; 10():1055865. PubMed ID: 36339046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilised Ruthenium Complexes for the Electrooxidation of 5-Hydroxymethylfurfural.
    Bühler J; Muntwyler A; Roithmeyer H; Adams P; Besmer ML; Blacque O; Tilley SD
    Chemistry; 2024 Apr; 30(19):e202304181. PubMed ID: 38285807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-valence metal sites induced by heterostructure engineering for promoting 5-hydroxymethylfurfural electrooxidation and hydrogen generation.
    Shang N; Li W; Wu Q; Li H; Wang H; Wang C; Bai G
    J Colloid Interface Sci; 2024 Apr; 659():621-628. PubMed ID: 38198939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Reconstruction of Sulfate-Terminated Copper Oxide Nanorods for Efficient and Stable 5-Hydroxymethylfurfural Electrooxidation.
    Fan Z; Yang Q; Zhang W; Wen H; Yuan H; He J; Yang HG; Chen Z
    Nano Lett; 2023 Dec; 23(23):11314-11322. PubMed ID: 38018816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst.
    Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D
    Front Chem; 2022; 10():853112. PubMed ID: 35372283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Self-Healing Co
    Dai H; Zhou P; Yang S; Yang L; Bai H; Dai C; Xu G; Fan W
    Inorg Chem; 2024 Sep; 63(35):16541-16553. PubMed ID: 39166921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural.
    Su T; Zhao D; Wang Y; Lü H; Varma RS; Len C
    ChemSusChem; 2021 Jan; 14(1):266-280. PubMed ID: 33200564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy.
    Zhang N; Zou Y; Tao L; Chen W; Zhou L; Liu Z; Zhou B; Huang G; Lin H; Wang S
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15895-15903. PubMed ID: 31452306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional MoNi
    Liu H; Xia J; Liu X; Hu Y; Shakouri M; Wu H; Zhu M; Guo Y; Chen J; Wang H; Wang Y
    ChemSusChem; 2024 Oct; ():e202401516. PubMed ID: 39429049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt telluride regulated by nickel for efficient electrooxidation of 5-hydroxymethylfurfural.
    Li J; Hao G; Jin G; Zhao T; Li D; Zhong D; Li J; Zhao Q
    J Colloid Interface Sci; 2024 Sep; 670():96-102. PubMed ID: 38759272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Built-in electric field in NiO-CuO heterostructures to regulate the hydroxide adsorption sites for 5-hydroxymethylfurfural electrooxidation assisted hydrogen production.
    Zhu Y; Wei J; Wu J; Chen R; Tsiakaras P; Yin S
    J Colloid Interface Sci; 2024 Nov; 673():301-311. PubMed ID: 38878365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface engineering of the NiO/CeO
    He X; Mo Z; Liu H; Wang C
    Dalton Trans; 2023 Jul; 52(27):9456-9464. PubMed ID: 37366113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Entropy Engineering in Hollow Layered Hydroxide Arrays to Boost 5-Hydroxymethylfurfural Electrooxidation by Suppressing Oxygen Evolution.
    Xin Y; Fu H; Chen L; Ji Y; Li Y; Shen K
    ACS Cent Sci; 2024 Oct; 10(10):1920-1932. PubMed ID: 39463830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review.
    Guo M; Lu X; Xiong J; Zhang R; Li X; Qiao Y; Ji N; Yu Z
    ChemSusChem; 2022 Sep; 15(17):e202201074. PubMed ID: 35790081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOF Material-Derived Bimetallic Sulfide Co
    Guo C; Huo Y; Zhang Q; Wan K; Yang G; Liu Z; Peng F
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The progress of research on vacancies in HMF electrooxidation.
    Chen Z; Zhang G; Jiang J; Feng X; Li W; Xiang X; Linling G
    Front Chem; 2024; 12():1416329. PubMed ID: 38947956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.