BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3928124)

  • 21. Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.
    Santillán M; Mackey MC
    Biophys J; 2004 Mar; 86(3):1282-92. PubMed ID: 14990461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of the lac regulatory genes in catabolite repression in Escherichia coli.
    Palmer J; Moses V
    Biochem J; 1967 May; 103(2):358-66. PubMed ID: 5340365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of oxygen and carbon dioxide on proteinase biosynthesis by Streptococcus faecalis var. liquefaciens.
    Swiencicki JF; Hartman RE
    Can J Microbiol; 1967 Nov; 13(11):1445-50. PubMed ID: 4965003
    [No Abstract]   [Full Text] [Related]  

  • 24. Molar growth yields of certain lactic acid bacteria as influenced by autolysis.
    Moustafa HH; Collins EB
    J Bacteriol; 1968 Jul; 96(1):117-25. PubMed ID: 4969603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catabolite regulation in a diauxic strain and a nondiauxic strain of Streptococcus bovis.
    Kearns DB; Russell JB
    Curr Microbiol; 1996 Oct; 33(4):216-9. PubMed ID: 8824165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catabolite repression in Escherichia coli. A study of two hypotheses.
    Moses V; Yudkin MD
    Biochem J; 1968 Nov; 110(1):135-42. PubMed ID: 4881142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of culture conditions on the NADH/NAD ratio and total amounts of NAD(H) in chemostat cultures of Enterococcus faecalis NCTC 775.
    Snoep JL; de Graef MR; Teixeira de Mattos MJ; Neijssel OM
    FEMS Microbiol Lett; 1994 Mar; 116(3):263-7. PubMed ID: 8181697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose prevents citrate metabolism by enterococci.
    Rea MC; Cogan TM
    Int J Food Microbiol; 2003 Dec; 88(2-3):201-6. PubMed ID: 14596991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molar growth yield of Streptococcus faecalis on pyruvate.
    Moustafa HH; Collins EB
    J Bacteriol; 1969 Mar; 97(3):1496-7. PubMed ID: 4975751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Turning on and turning off the arginine deiminase system in oral streptococci.
    Curran TM; Ma Y; Rutherford GC; Marquis RE
    Can J Microbiol; 1998 Nov; 44(11):1078-85. PubMed ID: 10030002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios.
    Snoep JL; de Graef MR; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1992 Oct; 138(10):2015-20. PubMed ID: 1479339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure sensitivity of streptococcal growth in relation to catabolism.
    Marquis RE; Brown WP; Fenn WO
    J Bacteriol; 1971 Feb; 105(2):504-11. PubMed ID: 4925191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2.
    Rodrussamee N; Sattayawat P; Yamada M
    BMC Microbiol; 2018 Jul; 18(1):73. PubMed ID: 30005621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of arginine as an energy source for the growth of Streptococcus faecalis.
    Deibel RH
    J Bacteriol; 1964 May; 87(5):988-92. PubMed ID: 4959807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catabolite repression of the lac operon. The contribution f trascriptional repression.
    Yudkin MD
    Biochem J; 1969 Sep; 114(2):307-11. PubMed ID: 4897462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molar growth yields in Streptococcus faecalis var. liquefaciens.
    Beck RW; Shugart LR
    J Bacteriol; 1966 Sep; 92(3):802-3. PubMed ID: 4958779
    [No Abstract]   [Full Text] [Related]  

  • 38. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.
    del Rio B; Ladero V; Redruello B; Linares DM; Fernández M; Martín MC; Alvarez MA
    Food Microbiol; 2015 Jun; 48():163-70. PubMed ID: 25791004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Catabolyte repression of Escherichia coli K12 mutants with defects in different systems of glucose transport].
    Gershanovich VN; Iurovitskaia NV; Komissarova LV; Bol'shakova TN; Erlagaeva RS
    Mol Biol (Mosk); 1976; 10(1):216-23. PubMed ID: 785237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB.
    Fisher SH; Strauch MA; Atkinson MR; Wray LV
    J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.