These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 39281449)
21. Agglomeration structure of superparamagnetic nanoparticles in a nematic liquid crystal medium: Image analysis datasets based on cryo-electron microscopy and polarised optical microscopy techniques. Sung B; Abelmann L Data Brief; 2021 Feb; 34():106716. PubMed ID: 33490334 [TBL] [Abstract][Full Text] [Related]
22. An introduction to scanning transmission electron microscopy for the study of protozoans. Trépout S; Sgarra ML; Marco S; Ramm G Mol Microbiol; 2024 Apr; 121(4):659-670. PubMed ID: 38140856 [TBL] [Abstract][Full Text] [Related]
23. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Kuntsche J; Horst JC; Bunjes H Int J Pharm; 2011 Sep; 417(1-2):120-37. PubMed ID: 21310225 [TBL] [Abstract][Full Text] [Related]
24. Cryogenic Electron Microscopy Methodologies as Analytical Tools for the Study of Self-Assembled Pharmaceutics. Koifman N; Talmon Y Pharmaceutics; 2021 Jul; 13(7):. PubMed ID: 34371706 [TBL] [Abstract][Full Text] [Related]
25. Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. Peretz Damari S; Shamrakov D; Varenik M; Koren E; Nativ-Roth E; Barenholz Y; Regev O Int J Pharm; 2018 Aug; 547(1-2):648-655. PubMed ID: 29913218 [TBL] [Abstract][Full Text] [Related]
26. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study. Miot J; Maclellan K; Benzerara K; Boisset N Geobiology; 2011 Nov; 9(6):459-70. PubMed ID: 21955835 [TBL] [Abstract][Full Text] [Related]
27. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. Luef B; Fakra SC; Csencsits R; Wrighton KC; Williams KH; Wilkins MJ; Downing KH; Long PE; Comolli LR; Banfield JF ISME J; 2013 Feb; 7(2):338-50. PubMed ID: 23038172 [TBL] [Abstract][Full Text] [Related]
28. Direct Comparison of Standard Transmission Electron Microscopy and Cryogenic-TEM in Imaging Nanocrystals Inside Liposomes. Li T; Nowell CJ; Cipolla D; Rades T; Boyd BJ Mol Pharm; 2019 Apr; 16(4):1775-1781. PubMed ID: 30810323 [TBL] [Abstract][Full Text] [Related]
29. Characterization of Complex Drug Formulations Using Cryogenic Scanning Electron Microscopy (Cryo-SEM). Liang J; Koo B; Wu Y; Manna S; Noble JM; Patel M; Park JH; Kozak D; Wang Y; Zheng J Curr Protoc; 2022 Apr; 2(4):e406. PubMed ID: 35384403 [TBL] [Abstract][Full Text] [Related]
30. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products. Zou P; Tyner K; Raw A; Lee S AAPS J; 2017 Sep; 19(5):1359-1376. PubMed ID: 28762128 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the Physicochemical Properties of the Iron Nanoparticle Drug Products: Brand and Generic Sodium Ferric Gluconate. Brandis JEP; Kihn KC; Taraban MB; Schnorr J; Confer AM; Batelu S; Sun D; Rodriguez JD; Jiang W; Goldberg DP; Langguth P; Stemmler TL; Yu YB; Kane MA; Polli JE; Michel SLJ Mol Pharm; 2021 Apr; 18(4):1544-1557. PubMed ID: 33621099 [TBL] [Abstract][Full Text] [Related]
32. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. Stewart PL Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27339510 [TBL] [Abstract][Full Text] [Related]
33. Hidden structural features of multicompartment micelles revealed by cryogenic transmission electron tomography. Löbling TI; Haataja JS; Synatschke CV; Schacher FH; Müller M; Hanisch A; Gröschel AH; Müller AH ACS Nano; 2014 Nov; 8(11):11330-40. PubMed ID: 25195820 [TBL] [Abstract][Full Text] [Related]
34. Nanoscale Characterization of Liquid-Solid Interfaces by Coupling Cryo-Focused Ion Beam Milling with Scanning Electron Microscopy and Spectroscopy. Moon T; Colletta M; Kourkoutis LF J Vis Exp; 2022 Jul; (185):. PubMed ID: 35913136 [TBL] [Abstract][Full Text] [Related]
35. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment. Wille G; Hellal J; Ollivier P; Richard A; Burel A; Jolly L; Crampon M; Michel C Microsc Microanal; 2017 Dec; 23(6):1159-1172. PubMed ID: 29143694 [TBL] [Abstract][Full Text] [Related]
36. Cryogenic transmission electron microscopy: aqueous suspensions of nanoscale objects. Burrows ND; Penn RL Microsc Microanal; 2013 Dec; 19(6):1542-53. PubMed ID: 24001937 [TBL] [Abstract][Full Text] [Related]
37. Detection and Characterization of Extracellular Vesicles by Transmission and Cryo-Transmission Electron Microscopy. Cizmar P; Yuana Y Methods Mol Biol; 2017; 1660():221-232. PubMed ID: 28828660 [TBL] [Abstract][Full Text] [Related]
38. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. Newcomb CJ; Moyer TJ; Lee SS; Stupp SI Curr Opin Colloid Interface Sci; 2012 Dec; 17(6):350-359. PubMed ID: 23204913 [TBL] [Abstract][Full Text] [Related]
40. Unveiling the Native Morphology of Extracellular Vesicles from Human Cerebrospinal Fluid by Atomic Force and Cryogenic Electron Microscopy. Kurtjak M; Kereïche S; Klepac D; Križan H; Perčić M; Krušić Alić V; Lavrin T; Lenassi M; Wechtersbach K; Kojc N; Vukomanović M; Zrna S; Biberić M; Domitrović R; Grabušić K; Malenica M Biomedicines; 2022 May; 10(6):. PubMed ID: 35740275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]