These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 39281687)
1. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Alfaro E; Casitas R; Díaz-García E; García-Tovar S; Galera R; Torres-Vargas M; Fernández-Velilla M; López-Fernández C; Añón JM; Quintana-Díaz M; García-Río F; Cubillos-Zapata C Front Immunol; 2024; 15():1401015. PubMed ID: 39281687 [TBL] [Abstract][Full Text] [Related]
2. Medium-Term Disability and Long-Term Functional Impairment Persistence in Survivors of Severe COVID-19 ARDS: Clinical and Physiological Insights. Casitas R; Galera R; Torres-Vargas M; Garcia-Tovar S; Alfaro E; Díaz-Garcia E; Martinez-Cerón E; Garcia-Garcia M; Torres I; Núñez-Fernández M; Fernández-Villar A; Fernández-Velilla M; Añón JM; Cubillos-Zapata C; García-Río F Arch Bronconeumol; 2024 Oct; 60(10):619-626. PubMed ID: 38853119 [TBL] [Abstract][Full Text] [Related]
3. Pulmonary redox imbalance drives early fibroproliferative response in moderate/severe coronavirus disease-19 acute respiratory distress syndrome and impacts long-term lung abnormalities. Yang C; Tan Y; Li Z; Hu L; Chen Y; Zhu S; Hu J; Huai T; Li M; Zhang G; Rao D; Fei G; Shao M; Ding Z Ann Intensive Care; 2024 May; 14(1):72. PubMed ID: 38735020 [TBL] [Abstract][Full Text] [Related]
4. COVID-19: Immunohistochemical Analysis of TGF-β Signaling Pathways in Pulmonary Fibrosis. Vaz de Paula CB; Nagashima S; Liberalesso V; Collete M; da Silva FPG; Oricil AGG; Barbosa GS; da Silva GVC; Wiedmer DB; da Silva Dezidério F; Noronha L Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008594 [TBL] [Abstract][Full Text] [Related]
5. Transforming Growth Factor-β1 in predicting early lung fibroproliferation in patients with acute respiratory distress syndrome. Forel JM; Guervilly C; Farnarier C; Donati SY; Hraiech S; Persico N; Allardet-Servent J; Coiffard B; Gainnier M; Loundou A; Sylvestre A; Roch A; Bourenne J; Papazian L PLoS One; 2018; 13(11):e0206105. PubMed ID: 30395619 [TBL] [Abstract][Full Text] [Related]
6. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts. Jablonska E; Markart P; Zakrzewicz D; Preissner KT; Wygrecka M J Biol Chem; 2010 Apr; 285(15):11638-51. PubMed ID: 20142324 [TBL] [Abstract][Full Text] [Related]
7. Active transforming growth factor-beta1 activates the procollagen I promoter in patients with acute lung injury. Budinger GR; Chandel NS; Donnelly HK; Eisenbart J; Oberoi M; Jain M Intensive Care Med; 2005 Jan; 31(1):121-8. PubMed ID: 15565360 [TBL] [Abstract][Full Text] [Related]
8. Sepsis-induced acute respiratory distress syndrome with fatal outcome is associated to increased serum transforming growth factor beta-1 levels. de Pablo R; Monserrat J; Reyes E; Díaz D; Rodríguez-Zapata M; la Hera Ad; Prieto A; Alvarez-Mon M Eur J Intern Med; 2012 Jun; 23(4):358-62. PubMed ID: 22560386 [TBL] [Abstract][Full Text] [Related]
9. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. Hejenkowska ED; Mitash N; Donovan JE; Chandra A; Bertrand C; De Santi C; Greene CM; Mu F; Swiatecka-Urban A J Innate Immun; 2023; 15(1):629-646. PubMed ID: 37579743 [TBL] [Abstract][Full Text] [Related]
10. Correlation analysis between mechanical power, transforming growth factor-β1, and connective tissue growth factor levels in acute respiratory distress syndrome patients and their clinical significance in pulmonary structural remodeling. Xie Y; Wang Y; Liu K; Li X Medicine (Baltimore); 2019 Jul; 98(29):e16531. PubMed ID: 31335733 [TBL] [Abstract][Full Text] [Related]
11. Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Uhal BD; Kim JK; Li X; Molina-Molina M Curr Pharm Des; 2007; 13(12):1247-56. PubMed ID: 17504233 [TBL] [Abstract][Full Text] [Related]
12. Defining the mechanism of galectin-3-mediated TGF-β1 activation and its role in lung fibrosis. Calver JF; Parmar NR; Harris G; Lithgo RM; Stylianou P; Zetterberg FR; Gooptu B; Mackinnon AC; Carr SB; Borthwick LA; Scott DJ; Stewart ID; Slack RJ; Jenkins RG; John AE J Biol Chem; 2024 Jun; 300(6):107300. PubMed ID: 38641066 [TBL] [Abstract][Full Text] [Related]
13. Cardiac Fibrosis Is a Risk Factor for Severe COVID-19. Mustroph J; Hupf J; Baier MJ; Evert K; Brochhausen C; Broeker K; Meindl C; Seither B; Jungbauer C; Evert M; Maier LS; Wagner S Front Immunol; 2021; 12():740260. PubMed ID: 34745111 [TBL] [Abstract][Full Text] [Related]
14. Specific Features of Fibrotic Lung Fibroblasts Highly Sensitive to Fibrotic Processes Mediated via TGF-β-ERK5 Interaction. Kadoya K; Togo S; Tulafu M; Namba Y; Iwai M; Watanabe J; Okabe T; Jin J; Kodama Y; Kitamura H; Ogura T; Kitamura N; Ikeo K; Takeda T; Kondo N; Takahashi K Cell Physiol Biochem; 2019; 52(4):822-837. PubMed ID: 30946557 [TBL] [Abstract][Full Text] [Related]
15. Pirfenidone Alleviates Inflammation and Fibrosis of Acute Respiratory Distress Syndrome by Modulating the Transforming Growth Factor-β/Smad Signaling Pathway. Paik SS; Lee JM; Ko IG; Kim SR; Kang SW; An J; Kim JA; Kim D; Hwang L; Jin JJ; Kim SH; Cha JY; Choi CW Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125585 [TBL] [Abstract][Full Text] [Related]
16. Endothelial dysfunction and persistent inflammation in severe post-COVID-19 patients: implications for gas exchange. Alfaro E; Díaz-García E; García-Tovar S; Galera R; Casitas R; Torres-Vargas M; López-Fernández C; Añón JM; García-Río F; Cubillos-Zapata C BMC Med; 2024 Jun; 22(1):242. PubMed ID: 38867241 [TBL] [Abstract][Full Text] [Related]
17. Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Cui Y; Robertson J; Maharaj S; Waldhauser L; Niu J; Wang J; Farkas L; Kolb M; Gauldie J Int J Biochem Cell Biol; 2011 Aug; 43(8):1122-33. PubMed ID: 21514399 [TBL] [Abstract][Full Text] [Related]
18. Transforming growth factor-β1 downregulates vascular endothelial growth factor-D expression in human lung fibroblasts via the Jun NH2-terminal kinase signaling pathway. Cui Y; Osorio JC; Risquez C; Wang H; Shi Y; Gochuico BR; Morse D; Rosas IO; El-Chemaly S Mol Med; 2014 Mar; 20(1):120-34. PubMed ID: 24515257 [TBL] [Abstract][Full Text] [Related]
19. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts. Shaukat I; Barré L; Venkatesan N; Li D; Jaquinet JC; Fournel-Gigleux S; Ouzzine M PLoS One; 2016; 11(1):e0146499. PubMed ID: 26751072 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis. Das S; Kumar M; Negi V; Pattnaik B; Prakash YS; Agrawal A; Ghosh B Am J Respir Cell Mol Biol; 2014 May; 50(5):882-92. PubMed ID: 24279830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]