These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39282349)

  • 1. Full-length structure and heme binding in the transcriptional regulator HcpR.
    Belvin BR; Musayev FN; Escalante CR; Lewis JP
    bioRxiv; 2024 Sep; ():. PubMed ID: 39282349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrosative stress sensing in Porphyromonas gingivalis: structure of and heme binding by the transcriptional regulator HcpR.
    Belvin BR; Musayev FN; Burgner J; Scarsdale JN; Escalante CR; Lewis JP
    Acta Crystallogr D Struct Biol; 2019 Apr; 75(Pt 4):437-450. PubMed ID: 30988260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells.
    Lewis JP; Yanamandra SS; Anaya-Bergman C
    Infect Immun; 2012 Sep; 80(9):3319-31. PubMed ID: 22778102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Belvin BR; Gui Q; Hutcherson JA; Lewis JP
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30670550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress.
    da Silva SM; Amaral C; Neves SS; Santos C; Pimentel C; Rodrigues-Pousada C
    FEBS Open Bio; 2015; 5():594-604. PubMed ID: 26273559
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Bielecki M; Antonyuk S; Strange RW; Smalley JW; Mackiewicz P; Śmiga M; Stępień P; Olczak M; Olczak T
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30266745
    [No Abstract]   [Full Text] [Related]  

  • 7. An HcpR homologue from Desulfovibrio desulfuricans and its possible role in nitrate reduction and nitrosative stress.
    Cadby IT; Busby SJ; Cole JA
    Biochem Soc Trans; 2011 Jan; 39(1):224-9. PubMed ID: 21265778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme and nitric oxide binding by the transcriptional regulator DnrF from the marine bacterium
    Ebert M; Schweyen P; Bröring M; Laass S; Härtig E; Jahn D
    J Biol Chem; 2017 Sep; 292(37):15468-15480. PubMed ID: 28765283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR.
    Giardina G; Rinaldo S; Johnson KA; Di Matteo A; Brunori M; Cutruzzolà F
    J Mol Biol; 2008 May; 378(5):1002-15. PubMed ID: 18420222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.
    Rodionov DA; Dubchak IL; Arkin AP; Alm EJ; Gelfand MS
    PLoS Comput Biol; 2005 Oct; 1(5):e55. PubMed ID: 16261196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for
    Śmiga M; Olczak T
    Microorganisms; 2019 Nov; 7(12):. PubMed ID: 31795139
    [No Abstract]   [Full Text] [Related]  

  • 12. Probing domain interactions in soluble guanylate cyclase.
    Derbyshire ER; Winter MB; Ibrahim M; Deng S; Spiro TG; Marletta MA
    Biochemistry; 2011 May; 50(20):4281-90. PubMed ID: 21491957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique Properties of Heme Binding of the
    Kosno J; Siemińska K; Olczak T
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual heme binding properties of the dissimilative nitrate respiration regulator, a bacterial nitric oxide sensor.
    Rinaldo S; Castiglione N; Giardina G; Caruso M; Arcovito A; Longa SD; D'Angelo P; Cutruzzolà F
    Antioxid Redox Signal; 2012 Nov; 17(9):1178-89. PubMed ID: 22424265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution.
    Olczak T; Śmiga M; Antonyuk SV; Smalley JW
    Microbiol Mol Biol Rev; 2024 Mar; 88(1):e0013123. PubMed ID: 38305743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development.
    Butler CA; Dashper SG; Zhang L; Seers CA; Mitchell HL; Catmull DV; Glew MD; Heath JE; Tan Y; Khan HS; Reynolds EC
    PLoS One; 2014; 9(11):e111168. PubMed ID: 25375181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases.
    Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X
    J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study.
    Sheng Y; Zhong L; Guo D; Lau G; Feng C
    J Inorg Biochem; 2015 Dec; 153():186-196. PubMed ID: 26277414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron and heme utilization in Porphyromonas gingivalis.
    Olczak T; Simpson W; Liu X; Genco CA
    FEMS Microbiol Rev; 2005 Jan; 29(1):119-44. PubMed ID: 15652979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions.
    Feng C
    Coord Chem Rev; 2012 Feb; 256(3-4):393-411. PubMed ID: 22523434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.