BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 3928248)

  • 1. Arterial to end-tidal CO2 gradients during spontaneous breathing, intermittent positive-pressure ventilation and jet ventilation.
    Capan LM; Ramanathan S; Sinha K; Turndorf H
    Crit Care Med; 1985 Oct; 13(10):810-3. PubMed ID: 3928248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring end-tidal carbon dioxide tensions with high-frequency jet ventilation in dogs with normal lungs.
    Mihm FG; Feeley TW; Rodarte A
    Crit Care Med; 1984 Mar; 12(3):180-2. PubMed ID: 6421542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and accurate monitoring of end-tidal carbon dioxide tensions during high-frequency jet ventilation.
    Algora-Weber A; Rubio JJ; Dominguez de Villota E; Cortes JL; Gomez D; Mosquera JM
    Crit Care Med; 1986 Oct; 14(10):895-7. PubMed ID: 3093150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency jet ventilation: the influence of gas flow, inspiration time and ventilatory frequency on gas transport in healthy anaesthetized dogs.
    Spoelstra AJ; Tamsma TJ
    Br J Anaesth; 1987 Oct; 59(10):1298-308. PubMed ID: 3118928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rebreathing improves accuracy of ventilatory monitoring.
    Bowie JR; Knox P; Downs JB; Smith RA
    J Clin Monit; 1995 Nov; 11(6):354-7. PubMed ID: 8576717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring adequacy of ventilation by capnometry during thoracotomy in dogs.
    Wagner AE; Gaynor JS; Dunlop CI; Allen SL; Demme WC
    J Am Vet Med Assoc; 1998 Feb; 212(3):377-9. PubMed ID: 9470047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arterial to end-tidal PCO2 difference varies with different ventilatory conditions during steady state hypercapnia in the rat.
    Tojima H; Kuriyama T; Fukuda Y
    Jpn J Physiol; 1988; 38(4):445-57. PubMed ID: 3148777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of end-tidal and arterial PCO2 gradients using a breathing model.
    Benallal H; Busso T
    Eur J Appl Physiol; 2000 Nov; 83(4 -5):402-8. PubMed ID: 11138582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airway movement in dogs during high-frequency jet ventilation.
    Quan SF; Calkins JM; Waterson CK; Conahan TJ; Hameroff SR; Otto CW
    Crit Care Med; 1984 May; 12(5):452-6. PubMed ID: 6370601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-tidal partial pressure of CO2 as an estimate of arterial partial pressure of CO2 during various ventilatory regimens in halothane-anesthetized dogs.
    Hightower CE; Kiorpes AL; Butler HC; Fedde MR
    Am J Vet Res; 1980 Apr; 41(4):610-2. PubMed ID: 6773449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of tidal volume and positive end-expiratory pressure on inspiratory gas distribution and gas exchange during mechanical ventilation in horses positioned in lateral recumbency.
    Moens Y; Lagerweij E; Gootjes P; Poortman J
    Am J Vet Res; 1998 Mar; 59(3):307-12. PubMed ID: 9522950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent positive pressure ventilation with either positive end-expiratory pressure or high frequency jet ventilation (HFJV), or HFJV alone in human acute respiratory failure.
    Brichant JF; Rouby JJ; Viars P
    Anesth Analg; 1986 Nov; 65(11):1135-42. PubMed ID: 3094403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of alveolar ventilation during high-frequency transtracheal jet ventilation in dogs.
    Abbrecht PH; Bryant HJ; Kyle RR; el Mawan T
    Crit Care Med; 1986 Jun; 14(6):563-9. PubMed ID: 3086034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic and respiratory effects of transtracheal high-frequency jet ventilation during difficult intubation.
    Nakatsuka M; MacLeod AD
    J Clin Anesth; 1992; 4(4):321-4. PubMed ID: 1419013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of spontaneous breathing during high-frequency jet ventilation. Influence of dynamic changes and static levels of lung stretch.
    van Vught AJ; Versprille A; Jansen JR
    Intensive Care Med; 1986; 12(1):26-32. PubMed ID: 3086413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of transrespiratory pressure on PETCO2-PaCO2 and ventilatory reflexes in humans.
    Banzett R; Strohl K; Geffroy B; Mead J
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):660-4. PubMed ID: 6799462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of spontaneous breathing during high-frequency jet ventilation. Separate effects of lung volume and jet frequency.
    van Vught AJ; Versprille A; Jansen JR
    Intensive Care Med; 1987; 13(5):315-22. PubMed ID: 3116059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of end-tidal carbon dioxide partial pressure during high frequency jet ventilation.
    Sehati S; Young JD; Sykes MK; McLeod CN
    Br J Anaesth; 1989; 63(7 Suppl 1):47S-52S. PubMed ID: 2514780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of double-lung jet ventilation and one-lung ventilation for thoracotomy.
    Misiolek H; Knapik P; Swanevelder J; Wyatt R; Misiolek M
    Eur J Anaesthesiol; 2008 Jan; 25(1):15-21. PubMed ID: 17579949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.