These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39283057)

  • 1. Room-Temperature Two-Dimensional InSe Plasmonic Laser.
    Li C; Wang Q; Yi R; Zhang X; Gan X; Liu K; Zhao J; Xiao F
    Nano Lett; 2024 Sep; ():. PubMed ID: 39283057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers.
    Sun JY; Nguyen DH; Liu JM; Lo CY; Ma YR; Chen YJ; Yi JY; Huang JZ; Giap H; Nguyen HYT; Liao CD; Lin MY; Lai CC
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301493. PubMed ID: 37559172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong Linearly Polarized Light Emission by Coupling Out-of-Plane Exciton to Anisotropic Gap Plasmon Nanocavity.
    Xu K; Zou Z; Li W; Zhang L; Ge M; Wang T; Du W
    Nano Lett; 2024 Mar; 24(12):3647-3653. PubMed ID: 38488282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals.
    Yang A; Li Z; Knudson MP; Hryn AJ; Wang W; Aydin K; Odom TW
    ACS Nano; 2015 Dec; 9(12):11582-8. PubMed ID: 26456299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Out-of-Plane Exciton Emission Enhancement in Two-Dimensional Indium Selenide via a Plasmonic Nanocavity.
    Bao X; Wu X; Ke Y; Wu K; Jiang C; Wu B; Li J; Yue S; Zhang S; Shi J; Du W; Zhong Y; Hu H; Bai P; Gong Y; Zhang Q; Zhang W; Liu X
    Nano Lett; 2023 May; 23(9):3716-3723. PubMed ID: 37125916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A room temperature low-threshold ultraviolet plasmonic nanolaser.
    Zhang Q; Li G; Liu X; Qian F; Li Y; Sum TC; Lieber CM; Xiong Q
    Nat Commun; 2014 Sep; 5():4953. PubMed ID: 25247634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Localized Surface Plasmon Nanolasers via Strong Coupling.
    Liao JW; Huang ZT; Wu CH; Gagrani N; Tan HH; Jagadish C; Chen KP; Lu TC
    Nano Lett; 2023 May; 23(10):4359-4366. PubMed ID: 37155142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of plasmonic fabry-perot nanolasers.
    Chang SW; Lin TR; Chuang SL
    Opt Express; 2010 Jul; 18(14):15039-53. PubMed ID: 20639990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity.
    Qi P; Dai Y; Luo Y; Tao G; Zheng L; Liu D; Zhang T; Zhou J; Shen B; Lin F; Liu Z; Fang Z
    Light Sci Appl; 2022 Jun; 11(1):176. PubMed ID: 35688809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature Near-infrared Excitonic Lasing from Mechanically Exfoliated InSe Microflake.
    Li C; Zhao L; Shang Q; Wang R; Bai P; Zhang J; Gao Y; Cao Q; Wei Z; Zhang Q
    ACS Nano; 2022 Jan; 16(1):1477-1485. PubMed ID: 34928140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers.
    Shang J; Cong C; Wang Z; Peimyoo N; Wu L; Zou C; Chen Y; Chin XY; Wang J; Soci C; Huang W; Yu T
    Nat Commun; 2017 Sep; 8(1):543. PubMed ID: 28912420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS
    Lee B; Liu W; Naylor CH; Park J; Malek SC; Berger JS; Johnson ATC; Agarwal R
    Nano Lett; 2017 Jul; 17(7):4541-4547. PubMed ID: 28613887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al
    Liao YJ; Cheng CW; Wu BH; Wang CY; Chen CY; Gwo S; Chen LJ
    RSC Adv; 2019 Apr; 9(24):13600-13607. PubMed ID: 35519571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS
    Shi J; Lin Z; Zhu Z; Zhou J; Xu GQ; Xu QH
    ACS Nano; 2022 Oct; 16(10):15862-15872. PubMed ID: 36169603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.