These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39283173)

  • 1. Manganese Carbodiimide (MnNCN): A New Heterogeneous Mn Catalyst for the Selective Synthesis of Nitriles from Alcohols.
    Liu X; Han B; Wu C; Zhou P; Jia M; Zhu L; Zhang Z
    Angew Chem Int Ed Engl; 2024 Sep; ():e202413799. PubMed ID: 39283173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Nitrile Yields of Aerobic Ammoxidation of Alcohols Achieved by Generating
    Xian C; He J; He Y; Nie J; Yuan Z; Sun J; Martens WN; Qin J; Zhu HY; Zhang Z
    J Am Chem Soc; 2022 Dec; 144(51):23321-23331. PubMed ID: 36516341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadium-catalyzed Oxidative Conversion of Primary Aromatic Alcohols into Amides and Nitriles with Molecular Oxygen.
    Zhao Y; Du Z; Guo B; Shen X; Li S; Wang T; Liang C
    Chem Asian J; 2022 Jun; 17(11):e202200224. PubMed ID: 35338755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-Metal-Catalyzed C-C Bond Formation from C-C Activation.
    Song F; Wang B; Shi ZJ
    Acc Chem Res; 2023 Nov; 56(21):2867-2886. PubMed ID: 37882453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for the preparation of amorphous manganese oxide and its application as heterogeneous catalyst in the direct synthesis of amides and nitriles.
    Xie F; Liang H; Dai W
    STAR Protoc; 2022 Sep; 3(3):101564. PubMed ID: 35852945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earth-Abundant Bimetallic Nanoparticle Catalysts for Aerobic Ammoxidation of Alcohols to Nitriles.
    Yasukawa T; Yang X; Kobayashi S
    J Org Chem; 2020 Jun; 85(11):7543-7548. PubMed ID: 32343140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric Field Enhanced Ammoxidation of Aldehydes Using Supported Fe Clusters Under Ambient Oxygen Pressure.
    Wang C; Li J; Shao T; Zhang D; Mai Y; Li Y; Besenbacher F; Niemantsverdriet H; Rosei F; Zhong J; Su R
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202313313. PubMed ID: 37930876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative Cleavage and Ammoxidation of Unsaturated Hydrocarbons
    Chen B; Zhang L; Luo H; Huang L; He P; Xue G; Liang H; Dai W
    JACS Au; 2023 Feb; 3(2):476-487. PubMed ID: 36873692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles.
    Sun K; Shan H; Neumann H; Lu GP; Beller M
    Nat Commun; 2022 Apr; 13(1):1848. PubMed ID: 35387970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Sodium-Manganese Oxide Catalyzed Aerobic Oxidative Cleavage of 1,2-Diols.
    Escande V; Lam CH; Coish P; Anastas PT
    Angew Chem Int Ed Engl; 2017 Aug; 56(32):9561-9565. PubMed ID: 28621829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P-450 model reactions: efficient and highly selective oxidation of alcohols with tetrabutylammonium peroxymonosulfate catalyzed by Mn-porphyrins.
    Rezaeifard A; Jafarpour M; Moghaddam GK; Amini F
    Bioorg Med Chem; 2007 Apr; 15(8):3097-101. PubMed ID: 17293117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal.
    Liu X; Krott M; Müller P; Hu C; Lueken H; Dronskowski R
    Inorg Chem; 2005 May; 44(9):3001-3. PubMed ID: 15847401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond.
    Sun W; Sun Q
    Acc Chem Res; 2019 Aug; 52(8):2370-2381. PubMed ID: 31333021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation.
    Liu X; Huang L; Ma Y; She G; Zhou P; Zhu L; Zhang Z
    Nat Commun; 2024 Aug; 15(1):7012. PubMed ID: 39147765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.
    Sun X; Li X; Song S; Zhu Y; Liang YF; Jiao N
    J Am Chem Soc; 2015 May; 137(18):6059-66. PubMed ID: 25895744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An MnNCN-Derived Electrocatalyst for CuWO
    Davi M; Mann M; Ma Z; Schrader F; Drichel A; Budnyk S; Rokicinska A; Kustrowski P; Dronskowski R; Slabon A
    Langmuir; 2018 Apr; 34(13):3845-3852. PubMed ID: 29554428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Chemical Bonding Study of Manganese Carbodiimide, MnNCN, As Compared to Manganese Oxide, MnO.
    Nelson R; Konze PM; Dronskowski R
    J Phys Chem A; 2017 Oct; 121(40):7778-7786. PubMed ID: 28933545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese-Catalyzed Direct Nucleophilic C(sp(2))-H Addition to Aldehydes and Nitriles.
    Zhou B; Hu Y; Wang C
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13659-63. PubMed ID: 26360929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoselective α-Alkylation of Nitriles with Primary Alcohols by Manganese(I)-Catalysis.
    Bera K; Mukherjee A
    Chem Asian J; 2023 Jul; 18(13):e202300157. PubMed ID: 37156742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis.
    Yin W; Wang C; Huang Y
    Org Lett; 2013 Apr; 15(8):1850-3. PubMed ID: 23560642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.