These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39283338)

  • 1. Monte Carlo simulations of glass-forming liquids beyond Metropolis.
    Berthier L; Ghimenti F; van Wijland F
    J Chem Phys; 2024 Sep; 161(11):. PubMed ID: 39283338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible Monte Carlo Algorithms for Hard Disk Glasses: From Event-Chain to Collective Swaps.
    Ghimenti F; Berthier L; van Wijland F
    Phys Rev Lett; 2024 Jul; 133(2):028202. PubMed ID: 39073951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps.
    Michel M; Kapfer SC; Krauth W
    J Chem Phys; 2014 Feb; 140(5):054116. PubMed ID: 24511931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiparticle moves in acceptance rate optimized Monte Carlo.
    Neumann T; Danilov D; Wenzel W
    J Comput Chem; 2015 Nov; 36(30):2236-45. PubMed ID: 26459216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Monte Carlo implementation of the Fourier path integral algorithm.
    Chakravarty C
    J Chem Phys; 2005 Jul; 123(2):24104. PubMed ID: 16050738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation.
    Nilmeier JP; Crooks GE; Minh DD; Chodera JD
    Proc Natl Acad Sci U S A; 2011 Nov; 108(45):E1009-18. PubMed ID: 22025687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic potential switching algorithm for Monte Carlo simulations of complex systems.
    Mak CH
    J Chem Phys; 2005 Jun; 122(21):214110. PubMed ID: 15974731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized Metropolis dynamics with a generalized master equation: an approach for time-independent and time-dependent Monte Carlo simulations of generalized spin systems.
    da Silva R; Drugowich de Felício JR; Martinez AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066707. PubMed ID: 23005243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of dense polymer melts using event chain algorithms.
    Kampmann TA; Boltz HH; Kierfeld J
    J Chem Phys; 2015 Jul; 143(4):044105. PubMed ID: 26233105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks.
    McNaughton B; Milošević MV; Perali A; Pilati S
    Phys Rev E; 2020 May; 101(5-1):053312. PubMed ID: 32575304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.
    Chen Y; Roux B
    J Chem Theory Comput; 2015 Aug; 11(8):3572-83. PubMed ID: 26574442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-chain Monte Carlo algorithms for hard-sphere systems.
    Bernard EP; Krauth W; Wilson DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056704. PubMed ID: 20365093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.
    Chen Y; Roux B
    J Chem Phys; 2014 Sep; 141(11):114107. PubMed ID: 25240345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of kinetically slowed down phase separation.
    Růžička Š; Allen MP
    Eur Phys J E Soft Matter; 2015 Jun; 38(6):68. PubMed ID: 26123773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Biased Metropolis Algorithms: From protons to proteins.
    Bazavov A; Berg BA; Zhou HX
    Math Comput Simul; 2010 Feb; 80(6):1056-1067. PubMed ID: 26612967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic Gradient Descent-like relaxation is equivalent to Metropolis dynamics in discrete optimization and inference problems.
    Angelini MC; Cavaliere AG; Marino R; Ricci-Tersenghi F
    Sci Rep; 2024 May; 14(1):11638. PubMed ID: 38773255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of conformational biases in Monte Carlo simulations of protein folding: lessons from Metropolis-Hastings approach.
    Przytycka T
    Proteins; 2004 Nov; 57(2):338-44. PubMed ID: 15340921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems.
    Alzate-Cardona JD; Sabogal-Suárez D; Evans RFL; Restrepo-Parra E
    J Phys Condens Matter; 2019 Mar; 31(9):095802. PubMed ID: 30540976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.