These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39284782)

  • 1. The dynamic roles of intracellular vacuoles in heavy metal detoxification by Rhodotorula mucilaginosa.
    Shi Y; Tang L; Shao Q; Jiang Y; Wang Z; Peng C; Gu T; Li Z
    J Appl Microbiol; 2024 Sep; 135(9):. PubMed ID: 39284782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Analysis on Key Metabolic Pathways in Rhodotorula mucilaginosa Under Pb(II) Stress.
    Chen T; Shi Y; Peng C; Tang L; Chen Y; Wang T; Wang Z; Wang S; Li Z
    Appl Environ Microbiol; 2022 Apr; 88(7):e0221521. PubMed ID: 35311507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detoxification of Cu(II) by the red yeast Rhodotorula mucilaginosa: from extracellular to intracellular.
    Wang M; Ma J; Wang X; Wang Z; Tang L; Chen H; Li Z
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10181-10190. PubMed ID: 33043391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis.
    Morel M; Crouzet J; Gravot A; Auroy P; Leonhardt N; Vavasseur A; Richaud P
    Plant Physiol; 2009 Feb; 149(2):894-904. PubMed ID: 19036834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.
    Sharma SS; Dietz KJ; Mimura T
    Plant Cell Environ; 2016 May; 39(5):1112-26. PubMed ID: 26729300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: Identification of a protein expression signature for heavy metal exposure.
    Ilyas S; Rehman A; Coelho AV; Sheehan D
    J Proteomics; 2016 Jun; 141():47-56. PubMed ID: 27090762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomics reveals the mechanism of Antarctic yeast Rhodotorula mucliaginosa AN5 to cope with cadmium stress.
    Zhang C; Shi C; Zhang H; Yu K; Wang Y; Jiang J; Kan G
    Biometals; 2022 Feb; 35(1):53-65. PubMed ID: 34731410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical changes of polysaccharides and proteins within EPS under Pb(II) stress in Rhodotorula mucilaginosa.
    Li J; Jiang Z; Chen S; Wang T; Jiang L; Wang M; Wang S; Li Z
    Ecotoxicol Environ Saf; 2019 Jun; 174():484-490. PubMed ID: 30856560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodotorula mucilaginosa YR29 is able to accumulate Pb
    Angeles de Paz G; Martínez-Gutierrez H; Ramírez-Granillo A; López-Villegas EO; Medina-Canales MG; Rodríguez-Tovar AV
    World J Microbiol Biotechnol; 2023 Jul; 39(9):238. PubMed ID: 37391528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification.
    Ramsay LM; Gadd GM
    FEMS Microbiol Lett; 1997 Jul; 152(2):293-8. PubMed ID: 9231423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional characterization of a novel metallothionein gene in Antarctic sea-ice yeast (Rhodotorula mucilaginosa).
    Kan G; Ju Y; Zhou Y; Shi C; Qiao Y; Yang Y; Wang R; Wang X
    J Basic Microbiol; 2019 Sep; 59(9):879-889. PubMed ID: 31339587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.
    Wang W; Deng Z; Tan H; Cao L
    Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of cadmium and lead by
    Daisley BA; Monachese M; Trinder M; Bisanz JE; Chmiel JA; Burton JP; Reid G
    Gut Microbes; 2019; 10(3):321-333. PubMed ID: 30426826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weakened Cd toxicity to fungi under coexistence of Pb in solution.
    Wang T; Zhang L; Li S; Meng L; Su M; Wang Z; Nong Y; Sun Y; Wang S; Li Z
    J Hazard Mater; 2022 Mar; 426():127984. PubMed ID: 34953259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Search of heavy metals biosorbents among yeasts of different taxonomic groups].
    Lozovaia OG; Kasatkina TP; Podgorskiĭ VS
    Mikrobiol Z; 2004; 66(2):92-101. PubMed ID: 15208860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic.
    Kan G; Wang X; Jiang J; Zhang C; Chi M; Ju Y; Shi C
    Microbiologyopen; 2019 Mar; 8(3):e00657. PubMed ID: 29926536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens.
    Sharifan H; Moore J; Ma X
    Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal tolerance and removal potential in mixed-species biofilm.
    Grujić S; Vasić S; Čomić L; Ostojić A; Radojević I
    Water Sci Technol; 2017 Aug; 76(3-4):806-812. PubMed ID: 28799927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii.
    Ge J; Tao J; Zhao J; Wu Z; Zhang H; Gao Y; Tian S; Xie R; Xu S; Lu L
    Ecotoxicol Environ Saf; 2022 Aug; 241():113795. PubMed ID: 35753274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.