These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 39285286)
1. Characterization of active transposable elements and their new insertions in tuber propagated greater yam (Dioscorea alata). Panhwar SA; Wang D; Lin F; Wang Y; Liu M; Chen R; Huang Y; Wu W; Huang D; Xiao Y; Xia W BMC Genomics; 2024 Sep; 25(1):864. PubMed ID: 39285286 [TBL] [Abstract][Full Text] [Related]
2. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. González LG; Deyholos MK BMC Genomics; 2012 Nov; 13():644. PubMed ID: 23171245 [TBL] [Abstract][Full Text] [Related]
3. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373 [TBL] [Abstract][Full Text] [Related]
4. Recent and dynamic transposable elements contribute to genomic divergence under asexuality. Ferreira de Carvalho J; de Jager V; van Gurp TP; Wagemaker NC; Verhoeven KJ BMC Genomics; 2016 Nov; 17(1):884. PubMed ID: 27821059 [TBL] [Abstract][Full Text] [Related]
5. Identification of quantitative trait nucleotides and candidate genes for tuber yield and mosaic virus tolerance in an elite population of white guinea yam (Dioscorea rotundata) using genome-wide association scan. Agre PA; Norman PE; Asiedu R; Asfaw A BMC Plant Biol; 2021 Nov; 21(1):552. PubMed ID: 34809560 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics. Khan H; Yuan H; Liu X; Nie Y; Majid M BMC Genomics; 2024 Jul; 25(1):687. PubMed ID: 38997681 [TBL] [Abstract][Full Text] [Related]
7. Characterization of transcriptional activation and inserted-into-gene preference of various transposable elements in the Brassica species. Gao C; Xiao M; Jiang L; Li J; Yin J; Ren X; Qian W; Oscar O; Fu D; Tang Z Mol Biol Rep; 2012 Jul; 39(7):7513-23. PubMed ID: 22327652 [TBL] [Abstract][Full Text] [Related]
8. Genomic re-assessment of the transposable element landscape of the potato genome. Zavallo D; Crescente JM; Gantuz M; Leone M; Vanzetti LS; Masuelli RW; Asurmendi S Plant Cell Rep; 2020 Sep; 39(9):1161-1174. PubMed ID: 32435866 [TBL] [Abstract][Full Text] [Related]
9. Diversity and evolution of transposable elements in the plant-parasitic nematodes. Dayi M BMC Genomics; 2024 May; 25(1):511. PubMed ID: 38783171 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586 [TBL] [Abstract][Full Text] [Related]
11. TEnest: automated chronological annotation and visualization of nested plant transposable elements. Kronmiller BA; Wise RP Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588 [TBL] [Abstract][Full Text] [Related]
12. Differences in activity and stability drive transposable element variation in tropical and temperate maize. Ou S; Scheben A; Collins T; Qiu Y; Seetharam AS; Menard CC; Manchanda N; Gent JI; Schatz MC; Anderson SN; Hufford MB; Hirsch CN Genome Res; 2024 Sep; 34(8):1140-1153. PubMed ID: 39251347 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean. Tian Z; Zhao M; She M; Du J; Cannon SB; Liu X; Xu X; Qi X; Li MW; Lam HM; Ma J Plant Cell; 2012 Nov; 24(11):4422-36. PubMed ID: 23175746 [TBL] [Abstract][Full Text] [Related]
14. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources. Choudhury RR; Neuhaus JM; Parisod C Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide analysis of LTR-retrotransposons in oil palm. Beulé T; Agbessi MD; Dussert S; Jaligot E; Guyot R BMC Genomics; 2015 Oct; 16():795. PubMed ID: 26470789 [TBL] [Abstract][Full Text] [Related]
16. Long-read sequencing of extrachromosomal circular DNA and genome assembly of a Solanum lycopersicum breeding line revealed active LTR retrotransposons originating from S. Peruvianum L. introgressions. Merkulov P; Serganova M; Petrov G; Mityukov V; Kirov I BMC Genomics; 2024 Apr; 25(1):404. PubMed ID: 38658857 [TBL] [Abstract][Full Text] [Related]
17. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. Zedek F; Smerda J; Smarda P; Bureš P BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487 [TBL] [Abstract][Full Text] [Related]
18. Co-evolution of plant LTR-retrotransposons and their host genomes. Zhao M; Ma J Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032 [TBL] [Abstract][Full Text] [Related]
19. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.). Kim S; Park JY; Yang TJ Mol Genet Genomics; 2015 Jun; 290(3):1027-37. PubMed ID: 25515665 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Hernandez-Hernandez EM; Fernández-Medina RD; Navarro-Escalante L; Nuñez J; Benavides-Machado P; Carareto CMA Mol Genet Genomics; 2017 Jun; 292(3):565-583. PubMed ID: 28204924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]