These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 39285381)

  • 1. Cross-step detection using center-of-pressure based algorithm for real-time applications.
    Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2024 Sep; 21(1):161. PubMed ID: 39285381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Toe-Off and Initial Contact in Real-Time With Self-Adapting Thresholds.
    Akhetova SM; Roembke R; Adamczyk P
    J Biomech Eng; 2024 Nov; 146(11):. PubMed ID: 38949879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of robot-based perturbed-balance training during treadmill walking in a high-functioning chronic stroke subject: a case-control study.
    Matjačić Z; Zadravec M; Olenšek A
    J Neuroeng Rehabil; 2018 Apr; 15(1):32. PubMed ID: 29642921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintaining stable transtibial amputee gait on level and simulated uneven conditions in a virtual environment.
    Sinitski EH; Lemaire ED; Baddour N; Besemann M; Dudek N; Hebert JS
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):40-48. PubMed ID: 31349766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Gait Event Detection Algorithm Using a Thigh-Worn Inertial Measurement Unit and Joint Angle Information.
    Strick JA; Farris RJ; Sawicki JT
    J Biomech Eng; 2024 Apr; 146(4):. PubMed ID: 38183222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Three Motion Capture-Based Algorithms for Spatiotemporal Gait Characteristics: How Do Algorithms Affect Accuracy and Precision of Clinical Outcomes?
    Caron-Laramée A; Walha R; Boissy P; Gaudreault N; Zelovic N; Lebel K
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm.
    Zhou H; Ji N; Samuel OW; Cao Y; Zhao Z; Chen S; Li G
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time kinematic-based detection of foot-strike during walking.
    Karakasis C; Artemiadis P
    J Biomech; 2021 Dec; 129():110849. PubMed ID: 34800744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly.
    Micó-Amigo ME; Kingma I; Ainsworth E; Walgaard S; Niessen M; van Lummel RC; van Dieën JH
    J Neuroeng Rehabil; 2016 Apr; 13():38. PubMed ID: 27093956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking.
    Afzal MR; Pyo S; Oh MK; Park YS; Yoon J
    J Neuroeng Rehabil; 2018 Apr; 15(1):33. PubMed ID: 29661237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA; Koller C; Arch ES
    J Biomech; 2020 Jan; 99():109481. PubMed ID: 31718818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system.
    Item-Glatthorn JF; Casartelli NC; Maffiuletti NA
    Gait Posture; 2016 Feb; 44():259-64. PubMed ID: 27004668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of gait event detection by centre of pressure during target stepping in healthy and paretic gait.
    van der Veen SM; Hammerbeck U; Baker RJ; Hollands KL
    J Biomech; 2018 Oct; 79():218-222. PubMed ID: 30135014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: a randomized controlled trial protocol.
    Begg R; Galea MP; James L; Sparrow WAT; Levinger P; Khan F; Said CM
    Trials; 2019 May; 20(1):317. PubMed ID: 31151480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.
    Chia Bejarano N; Ambrosini E; Pedrocchi A; Ferrigno G; Monticone M; Ferrante S
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):413-22. PubMed ID: 25069118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manual physical balance assistance of therapists during gait training of stroke survivors: characteristics and predicting the timing.
    Haarman JAM; Maartens E; van der Kooij H; Buurke JH; Reenalda J; Rietman JS
    J Neuroeng Rehabil; 2017 Dec; 14(1):125. PubMed ID: 29197402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm.
    Fadillioglu C; Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T
    Gait Posture; 2020 Sep; 81():102-108. PubMed ID: 32707401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of kinematic-based gait event detection methods in a self-paced treadmill application.
    Hendershot BD; Mahon CE; Pruziner AL
    J Biomech; 2016 Dec; 49(16):4146-4149. PubMed ID: 27825601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.