These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 39285451)

  • 1. Splam: a deep-learning-based splice site predictor that improves spliced alignments.
    Chao KH; Mao A; Salzberg SL; Pertea M
    Genome Biol; 2024 Sep; 25(1):243. PubMed ID: 39285451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splam: a deep-learning-based splice site predictor that improves spliced alignments.
    Chao KH; Mao A; Salzberg SL; Pertea M
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing.
    Krawczak M; Thomas NS; Hundrieser B; Mort M; Wittig M; Hampe J; Cooper DN
    Hum Mutat; 2007 Feb; 28(2):150-8. PubMed ID: 17001642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective deep learning-based approach for splice site identification in gene expression.
    Ali M; Shah D; Qazi S; Khan IA; Abrar M; Zahir S
    Sci Prog; 2024; 107(3):368504241266588. PubMed ID: 39051530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CI-SpliceAI-Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites.
    Strauch Y; Lord J; Niranjan M; Baralle D
    PLoS One; 2022; 17(6):e0269159. PubMed ID: 35657932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.
    Zhang Y; Liu X; MacLeod J; Liu J
    BMC Genomics; 2018 Dec; 19(1):971. PubMed ID: 30591034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepDSSR: Deep Learning Structure for Human Donor Splice Sites Recognition.
    Alam T; Islam MT; Househ M; Bouzerdoum A; Kawsar FA
    Stud Health Technol Inform; 2019 Jul; 262():236-239. PubMed ID: 31349311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.
    Parker MT; Knop K; Barton GJ; Simpson GG
    Genome Biol; 2021 Mar; 22(1):72. PubMed ID: 33648554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks.
    Liu X; Zhang H; Zeng Y; Zhu X; Zhu L; Fu J
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Splicing from Primary Sequence with Deep Learning.
    Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK
    Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.
    Reynolds DJ; Hertel KJ
    PLoS One; 2019; 14(10):e0223132. PubMed ID: 31581208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splice site proximity influences alternative exon definition.
    Carranza F; Shenasa H; Hertel KJ
    RNA Biol; 2022 Jan; 19(1):829-840. PubMed ID: 35723015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splice site recognition - deciphering Exon-Intron transitions for genetic insights using Enhanced integrated Block-Level gated LSTM model.
    Sha M; Parveen Rahamathulla M
    Gene; 2024 Jul; 915():148429. PubMed ID: 38575098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking deep learning splice prediction tools using functional splice assays.
    Riepe TV; Khan M; Roosing S; Cremers FPM; 't Hoen PAC
    Hum Mutat; 2021 Jul; 42(7):799-810. PubMed ID: 33942434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and recognition of 5' UTR intron splice sites in human pre-mRNA.
    Eden E; Brunak S
    Nucleic Acids Res; 2004; 32(3):1131-42. PubMed ID: 14960723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proto-splice site model of intron origin.
    Dibb NJ
    J Theor Biol; 1991 Aug; 151(3):405-16. PubMed ID: 1943150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.
    Collins RA; Stajich JE; Field DJ; Olive JE; DeAbreu DM
    RNA; 2015 May; 21(5):997-1004. PubMed ID: 25805857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of splice sites on the intron retention in histamine H3 receptors from rats and mice.
    Ding W; Lin L; Ren F; Zou H; Duan Z; Dai J
    J Genet Genomics; 2009 Aug; 36(8):475-82. PubMed ID: 19683670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.