These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 3928570)
1. A note on an in vitro test system to compare the bactericidal properties of wound dressings. Holland KT; Davis W J Appl Bacteriol; 1985 Jul; 59(1):61-3. PubMed ID: 3928570 [TBL] [Abstract][Full Text] [Related]
2. Standardizing an in vitro procedure for the evaluation of the antimicrobial activity of wound dressings and the assessment of three wound dressings. Tkachenko O; Karas JA J Antimicrob Chemother; 2012 Jul; 67(7):1697-700. PubMed ID: 22514261 [TBL] [Abstract][Full Text] [Related]
4. An in vitro test of the efficacy of silver-containing wound dressings against Staphylococcus aureus and Pseudomonas aeruginosa in simulated wound fluid. Said J; Dodoo CC; Walker M; Parsons D; Stapleton P; Beezer AE; Gaisford S Int J Pharm; 2014 Feb; 462(1-2):123-8. PubMed ID: 24374221 [TBL] [Abstract][Full Text] [Related]
5. In vitro diffusion bed, 3-day repeat challenge 'capacity' test for antimicrobial wound dressings. Greenman J; Thorn RM; Saad S; Austin AJ Int Wound J; 2006 Dec; 3(4):322-9. PubMed ID: 17199767 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a bi-layer wound dressing for burn care. II. In vitro and in vivo bactericidal properties. Martineau L; Shek PN Burns; 2006 Mar; 32(2):172-9. PubMed ID: 16455202 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Hassiba AJ; El Zowalaty ME; Webster TJ; Abdullah AM; Nasrallah GK; Khalil KA; Luyt AS; Elzatahry AA Int J Nanomedicine; 2017; 12():2205-2213. PubMed ID: 28356737 [TBL] [Abstract][Full Text] [Related]
8. Comparison of lipidocolloid and chlorhexidine-impregnated tulle gras dressings following microscopically controlled surgery. Hessam S; Georgas D; Sand M; Kassa T; Bruns N; Bechara FG J Wound Care; 2015 Mar; 24(3):135; 138-9. PubMed ID: 25764958 [TBL] [Abstract][Full Text] [Related]
9. A novel flow-system to establish experimental biofilms for modelling chronic wound infection and testing the efficacy of wound dressings. Duckworth PF; Rowlands RS; Barbour ME; Maddocks SE Microbiol Res; 2018 Oct; 215():141-147. PubMed ID: 30172300 [TBL] [Abstract][Full Text] [Related]
10. Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo. Fitzgerald DJ; Renick PJ; Forrest EC; Tetens SP; Earnest DN; McMillan J; Kiedaisch BM; Shi L; Roche ED Wound Repair Regen; 2017 Jan; 25(1):13-24. PubMed ID: 27859922 [TBL] [Abstract][Full Text] [Related]
11. Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis. Rembe JD; Fromm-Dornieden C; Böhm J; Stuermer EK Wound Repair Regen; 2018 Jan; 26(1):27-35. PubMed ID: 29363857 [TBL] [Abstract][Full Text] [Related]
12. An in vitro study of antimicrobial activity and efficacy of iodine-generating hydrogel dressings. Thorn RM; Greenman J; Austin A J Wound Care; 2006 Jul; 15(7):305-10. PubMed ID: 16869198 [TBL] [Abstract][Full Text] [Related]
13. SAP-containing dressings exhibit sustained antimicrobial effects over 7 days in vitro. Wiegand C; Abel M; Muldoon J; Ruth P; Hipler UC J Wound Care; 2013 Mar; 22(3):120, 122-4, 126-7. PubMed ID: 23665730 [TBL] [Abstract][Full Text] [Related]
14. Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial. Martineau L; Davis SC; Peng HT; Hung A J Invest Surg; 2007; 20(4):217-27. PubMed ID: 17710602 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial dressings: Comparison of the ability of a panel of dressings to prevent biofilm formation by key burn wound pathogens. Halstead FD; Rauf M; Bamford A; Wearn CM; Bishop JRB; Burt R; Fraise AP; Moiemen NS; Oppenheim BA; Webber MA Burns; 2015 Dec; 41(8):1683-1694. PubMed ID: 26188884 [TBL] [Abstract][Full Text] [Related]
16. A comparison of two bactericidal handwashing agents containing chlorhexidine. Lee MG; Hunt P; Felix D J Hosp Infect; 1988 Jul; 12(1):59-63. PubMed ID: 2905375 [TBL] [Abstract][Full Text] [Related]
17. The ability of a colloidal silver gel wound dressing to kill bacteria in vitro and in vivo. Tran PL; Huynh E; Hamood AN; de Souza A; Mehta D; Moeller KW; Moeller CD; Morgan M; Reid TW J Wound Care; 2017 Apr; 26(sup4):S16-S24. PubMed ID: 28379105 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. Thomas S; McCubbin P J Wound Care; 2003 Mar; 12(3):101-7. PubMed ID: 12677872 [TBL] [Abstract][Full Text] [Related]
19. [АNTISEPTICS: MODERN STRATEGY OF STRUGGLE WITH CAUSING AGENTS OF THE ІNFECTION COMPLICATIONS]. Nazarchuk OA Klin Khir; 2016; (9):59-61. PubMed ID: 30265488 [TBL] [Abstract][Full Text] [Related]
20. Use of flow cytometry to compare the antimicrobial efficacy of silver-containing wound dressings against planktonic Staphylococcus aureus and Pseudomonas aeruginosa. Percival SL; Slone W; Linton S; Okel T; Corum L; Thomas JG Wound Repair Regen; 2011; 19(3):436-41. PubMed ID: 21518089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]