These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39285745)
1. Addressing Challenges of Membrane Clogging in AF4-UV-ICPMS Analysis for Size Determination of Trace Elements in Acidic, Organic-Rich Peat Bog Waters. Wang Y; Butt SA; Cuss CW; Pei L; Xue JP; Luu A; Barraza F; Shotyk W Anal Chem; 2024 Sep; 96(37):14953-14962. PubMed ID: 39285745 [TBL] [Abstract][Full Text] [Related]
2. Challenges in using 0.45 µm filters to assess potentially bioavailable trace elements in the dissolved fraction of river and peat bog waters of the Boreal Zone. Wang Y; Cuss CW; Barraza F; Luu A; Oleksandrenko A; Shotyk W Water Res; 2024 Oct; 268(Pt A):122586. PubMed ID: 39413709 [TBL] [Abstract][Full Text] [Related]
3. Spatio-temporal variations in dissolved trace elements in peat bog porewaters impacted by dust inputs from open-pit mining activities in the Athabasca Bituminous Sands (ABS) region. Butt SA; Barraza F; Devito K; Frost L; Javed MB; Noernberg T; Oleksandrenko A; Shotyk W Environ Pollut; 2024 Mar; 345():123470. PubMed ID: 38307240 [TBL] [Abstract][Full Text] [Related]
4. Resolving Uncertainties in the Quantification of Trace Elements within Organic-Rich Boreal Rivers for AF4-UV-ICP-MS Analysis. Wang Y; Cuss CW; Pei L; Shotyk W Anal Chem; 2024 May; 96(18):6889-6897. PubMed ID: 38651635 [TBL] [Abstract][Full Text] [Related]
5. Mobility of trace metals in pore waters of two Central European peat bogs. Novak M; Pacherova P Sci Total Environ; 2008 May; 394(2-3):331-7. PubMed ID: 18302968 [TBL] [Abstract][Full Text] [Related]
6. Organic carbon, and major and trace elements reside in labile low-molecular form in the ground ice of permafrost peatlands: a case study of colloids in peat ice of Western Siberia. Lim AG; Loiko SV; Kuzmina DM; Krickov IV; Shirokova LS; Kulizhsky SP; Pokrovsky OS Environ Sci Process Impacts; 2022 Sep; 24(9):1443-1459. PubMed ID: 35226006 [TBL] [Abstract][Full Text] [Related]
7. Isotopic Composition of Pb in Peat and Porewaters from Three Contrasting Ombrotrophic Bogs in Finland: Evidence of Chemical Diagenesis in Response to Acidification. Shotyk W; Rausch N; Nieminen TM; Ukonmaanaho L; Krachler M Environ Sci Technol; 2016 Sep; 50(18):9943-51. PubMed ID: 27536961 [TBL] [Abstract][Full Text] [Related]
8. Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation. Drozdova OY; Aleshina AR; Tikhonov VV; Lapitskiy SA; Pokrovsky OS Chemosphere; 2020 Jul; 250():126216. PubMed ID: 32087384 [TBL] [Abstract][Full Text] [Related]
9. Overcoming establishment thresholds for peat mosses in human-made bog pools. Temmink RJM; Cruijsen PMJM; Smolders AJP; Bouma TJ; Fivash GS; Lengkeek W; Didderen K; Lamers LPM; van der Heide T Ecol Appl; 2021 Sep; 31(6):e02359. PubMed ID: 33884709 [TBL] [Abstract][Full Text] [Related]
10. Enzyme adaptation in Sphagnum peatlands questions the significance of dissolved organic matter in enzyme inhibition. Hájek T; Urbanová Z Sci Total Environ; 2024 Feb; 911():168685. PubMed ID: 38000758 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting the sorption of cesium in a nutrient-poor boreal bog. Lusa M; Bomberg M; Virtanen S; Lempinen J; Aromaa H; Knuutinen J; Lehto J J Environ Radioact; 2015 Sep; 147():22-32. PubMed ID: 26010098 [TBL] [Abstract][Full Text] [Related]
12. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact. Lusa M; Bomberg M; Aromaa H; Knuutinen J; Lehto J J Environ Radioact; 2015 May; 143():110-122. PubMed ID: 25752706 [TBL] [Abstract][Full Text] [Related]
13. Dust is the dominant source of "heavy metals" to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta. Shotyk W; Bicalho B; Cuss CW; Duke MJ; Noernberg T; Pelletier R; Steinnes E; Zaccone C Environ Int; 2016; 92-93():494-506. PubMed ID: 27177217 [TBL] [Abstract][Full Text] [Related]
14. Size-resolved distribution of trace elements in lysimeter soil solutions under contrasting long-term agricultural management to assess their bioavailability. Du L; Cuss CW; Dyck M; Noernberg T; Shotyk W Sci Total Environ; 2024 May; 924():171590. PubMed ID: 38485030 [TBL] [Abstract][Full Text] [Related]
15. Effect on Chemical and Physical Properties of Soil Each Peat Moss, Elemental Sulfur, and Sulfur-Oxidizing Bacteria. Lee SY; Kim EG; Park JR; Ryu YH; Moon W; Park GH; Ubaidillah M; Ryu SN; Kim KM Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579434 [TBL] [Abstract][Full Text] [Related]
16. Colloid-facilitated metal transport in peat filters. Kalmykova Y; Rauch S; Strömvall AM; Morrison G; Stolpe B; Hasselliöv M Water Environ Res; 2010 Jun; 82(6):506-11. PubMed ID: 20572457 [TBL] [Abstract][Full Text] [Related]
17. Ecological impacts of the industrial revolution in a lowland raised peat bog near Manchester, NW England. Garcés-Pastor S; Fletcher WJ; Ryan PA Ecol Evol; 2023 Feb; 13(2):e9807. PubMed ID: 36818526 [TBL] [Abstract][Full Text] [Related]
18. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties. Shaheen SM; Tsadilas CD; Rinklebe J Adv Colloid Interface Sci; 2013 Dec; 201-202():43-56. PubMed ID: 24168932 [TBL] [Abstract][Full Text] [Related]
19. Metals in Plant Functional Types of Ombrotrophic Peatlands in the Sudetes (SW Poland). Pech P; Wojtuń B; Samecka-Cymerman A; Polechońska L; Kempers AJ Arch Environ Contam Toxicol; 2022 May; 82(4):506-519. PubMed ID: 35396936 [TBL] [Abstract][Full Text] [Related]
20. Variations of inorganic ions and dissolved organic matter in different types of peat bogs and its ecological significance. Deng SY; Chen YB; Yu K; Yu ZG Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):571-580. PubMed ID: 33650367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]