These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces. Qiao S; Li Q; Feng XQ Eur Phys J E Soft Matter; 2018 Feb; 41(2):25. PubMed ID: 29464416 [TBL] [Abstract][Full Text] [Related]
6. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces. Lee E; Müller-Plathe F J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373 [TBL] [Abstract][Full Text] [Related]
7. Force-Based Wetting Characterization of Stochastic Superhydrophobic Coatings at Nanonewton Sensitivity. Hokkanen MJ; Backholm M; Vuckovac M; Zhou Q; Ras RHA Adv Mater; 2021 Oct; 33(42):e2105130. PubMed ID: 34469006 [TBL] [Abstract][Full Text] [Related]
8. Friction of Droplets Sliding on Microstructured Superhydrophobic Surfaces. Qiao S; Li S; Li Q; Li B; Liu K; Feng XQ Langmuir; 2017 Nov; 33(47):13480-13489. PubMed ID: 29094600 [TBL] [Abstract][Full Text] [Related]
9. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
10. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. Beitollahpoor M; Farzam M; Pesika NS J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141 [TBL] [Abstract][Full Text] [Related]
11. Factors controlling the pinning force of liquid droplets on liquid infused surfaces. Sadullah MS; Panter JR; Kusumaatmaja H Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997 [TBL] [Abstract][Full Text] [Related]
12. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Zhao L; Cheng J Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459 [TBL] [Abstract][Full Text] [Related]
13. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Xu W; Leeladhar R; Kang YT; Choi CH Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600 [TBL] [Abstract][Full Text] [Related]
14. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness". Zhao H; Park KC; Law KY Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132 [TBL] [Abstract][Full Text] [Related]
15. Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer. Fan L; Yan Q; Qian Q; Zhang S; Wu L; Peng Y; Jiang S; Guo L; Yao J; Wu H ACS Appl Mater Interfaces; 2022 Aug; 14(31):36246-36257. PubMed ID: 35881172 [TBL] [Abstract][Full Text] [Related]
16. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
17. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces. Raj R; Enright R; Zhu Y; Adera S; Wang EN Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739 [TBL] [Abstract][Full Text] [Related]
18. Probing the physical origins of droplet friction using a critically damped cantilever. Arunachalam S; Lin M; Daniel D Soft Matter; 2024 Oct; 20(38):7583-7591. PubMed ID: 39248408 [TBL] [Abstract][Full Text] [Related]
19. Mapping micrometer-scale wetting properties of superhydrophobic surfaces. Daniel D; Lay CL; Sng A; Jun Lee CJ; Jin Neo DC; Ling XY; Tomczak N Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25008-25012. PubMed ID: 31772014 [TBL] [Abstract][Full Text] [Related]
20. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]