These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39287140)
1. Improving UASS pesticide application: optimizing and validating drift and deposition simulations. Tang Q; Zhang R; Chen L; Zhang P; Li L; Xu G; Yi T; Hewitt A Pest Manag Sci; 2024 Sep; ():. PubMed ID: 39287140 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Chen P; Douzals JP; Lan Y; Cotteux E; Delpuech X; Pouxviel G; Zhan Y Front Plant Sci; 2022; 13():870956. PubMed ID: 36003827 [TBL] [Abstract][Full Text] [Related]
3. Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions. Huang Z; Wang C; Li Y; Zhang H; Zeng A; He X Pest Manag Sci; 2023 Mar; 79(3):1140-1153. PubMed ID: 36349383 [TBL] [Abstract][Full Text] [Related]
4. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
5. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters. Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971 [TBL] [Abstract][Full Text] [Related]
6. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
7. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
8. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
9. Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control. Zhang R; Hewitt AJ; Chen L; Li L; Tang Q Pest Manag Sci; 2023 Nov; 79(11):4123-4131. PubMed ID: 37494136 [TBL] [Abstract][Full Text] [Related]
10. Spray losses study of two pesticides by UASS in integrated rice-crayfish farming system and acute toxicity evaluation on Liu Y; Wang G; Li Y; Zhang Z; Pang S; He X; Song J Front Plant Sci; 2023; 14():1212818. PubMed ID: 37767301 [TBL] [Abstract][Full Text] [Related]
11. Modeling of the control logic of a UASS based on coefficient of variation spraying distribution analysis in an indoor flight simulator. Hanif AS; Han X; Yu SH; Han C; Baek SW; Lee CG; Lee DH; Kang YH Front Plant Sci; 2023; 14():1235548. PubMed ID: 37670862 [TBL] [Abstract][Full Text] [Related]
12. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
13. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
14. Evaluating spray drift from Uncrewed Aerial Spray Systems: A machine learning and variance-based sensitivity analysis of environmental and spray system parameters. Jerome GF; Qianwen H; Francis D; Bernhard G; Guobin W; Yubin L; Beibei G; Jia GW; Nan JY; Volker L Sci Total Environ; 2024 Jul; 934():173213. PubMed ID: 38750739 [TBL] [Abstract][Full Text] [Related]
15. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
17. Effect of formulations and adjuvants on the properties of acetamiprid solution and droplet deposition characteristics sprayed by UAV. Zeeshan M; Li H; Yousaf G; Ren H; Liu Y; Arshad M; Dou Z; Han X Front Plant Sci; 2024; 15():1441193. PubMed ID: 39157513 [TBL] [Abstract][Full Text] [Related]
18. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
19. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sassu A; Gambella F; Ghiani L; Mercenaro L; Caria M; Pazzona AL Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535445 [TBL] [Abstract][Full Text] [Related]
20. Control Efficacy and Deposition Characteristics of an Unmanned Aerial Spray System Low-Volume Application on Corn Fall Armyworm Shan C; Wu J; Song C; Chen S; Wang J; Wang H; Wang G; Lan Y Front Plant Sci; 2022; 13():900939. PubMed ID: 36176691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]