These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39288465)
1. Enrichment of deoxynojirimycin in mulberry using cation exchange resin: Adsorption/desorption characteristics and process optimization. Ma J; Ye Y; He R; Xiong Y; Xiao R; Wang K; Zhang Y; Wu X Food Chem; 2025 Jan; 463(Pt 2):141281. PubMed ID: 39288465 [TBL] [Abstract][Full Text] [Related]
2. Response surface optimized extraction of 1-deoxynojirimycin from mulberry leaves (Morus alba L.) and preparative separation with resins. Wang T; Li CQ; Zhang H; Li JW Molecules; 2014 May; 19(6):7040-56. PubMed ID: 24886934 [TBL] [Abstract][Full Text] [Related]
3. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Chen Y; Zhang W; Zhao T; Li F; Zhang M; Li J; Zou Y; Wang W; Cobbina SJ; Wu X; Yang L Food Chem; 2016 Mar; 194():712-22. PubMed ID: 26471611 [TBL] [Abstract][Full Text] [Related]
4. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. Kimura T; Nakagawa K; Kubota H; Kojima Y; Goto Y; Yamagishi K; Oita S; Oikawa S; Miyazawa T J Agric Food Chem; 2007 Jul; 55(14):5869-74. PubMed ID: 17555327 [TBL] [Abstract][Full Text] [Related]
5. Simple, selective, and rapid quantification of 1-deoxynojirimycin in mulberry leaf products by high-performance anion-exchange chromatography with pulsed amperometric detection. Yoshihashi T; Do HT; Tungtrakul P; Boonbumrung S; Yamaki K J Food Sci; 2010 Apr; 75(3):C246-50. PubMed ID: 20492274 [TBL] [Abstract][Full Text] [Related]
6. Optimization of 1-deoxynojirimycin extraction from mulberry leaves by using response surface methodology. Vichasilp C; Nakagawa K; Sookwong P; Suzuki Y; Kimura F; Higuchi O; Miyazawa T Biosci Biotechnol Biochem; 2009 Dec; 73(12):2684-9. PubMed ID: 19966480 [TBL] [Abstract][Full Text] [Related]
7. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Vichasilp C; Nakagawa K; Sookwong P; Higuchi O; Kimura F; Miyazawa T Food Chem; 2012 Oct; 134(4):1823-30. PubMed ID: 23442626 [TBL] [Abstract][Full Text] [Related]
8. Identification and Determination of the Polyhydroxylated Alkaloids Compounds with α-Glucosidase Inhibitor Activity in Mulberry Leaves of Different Origins. Ji T; Li J; Su SL; Zhu ZH; Guo S; Qian DW; Duan JA Molecules; 2016 Feb; 21(2):. PubMed ID: 26867190 [TBL] [Abstract][Full Text] [Related]
9. Studies on 1-deoxynojirimycin biosynthesis in mulberry ( Xin X; Jiang X; Thomas A; Niu B; Zhang M; Xu X; Zhang R; Li H; Gui Z Nat Prod Res; 2024 Aug; 38(15):2585-2594. PubMed ID: 36945193 [TBL] [Abstract][Full Text] [Related]
10. One-step enrichment of phenolics from Chaenomeles speciosa (Sweet) Nakai fruit using macroporous resin: Adsorption/desorption characteristics, process optimization and UPLC-QqQ-MS/MS-based quantification. Hou M; Lin C; Ma Y; Shi J; Liu J; Zhu L; Bian Z Food Chem; 2024 May; 439():138085. PubMed ID: 38039612 [TBL] [Abstract][Full Text] [Related]
11. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies. Kumar P; Lau PW; Kale S; Johnson S; Pareek V; Utikar R; Lali A J Chromatogr A; 2014 Aug; 1356():105-16. PubMed ID: 25022481 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of ion exchange and adsorption coexist on medium-low concentration ammonium-nitrogen removal by ion-exchange resin. Yunnen C; Xiaoyan L; Changshi X; Liming L Environ Technol; 2015; 36(18):2349-56. PubMed ID: 25753041 [TBL] [Abstract][Full Text] [Related]
13. Kinetic analysis of inhibition of α-glucosidase by leaf powder from Qiao Y; Nakayama J; Ikeuchi T; Ito M; Kimura T; Kojima K; Takita T; Yasukawa K Biosci Biotechnol Biochem; 2020 Oct; 84(10):2149-2156. PubMed ID: 32660357 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and thermodynamics of rebaudioside A adsorption on a strongly acidic cation exchange resin. Chen B; He J; Xiao X; Li R J Sep Sci; 2020 Sep; 43(17):3474-3481. PubMed ID: 32627336 [TBL] [Abstract][Full Text] [Related]
15. Simple and rapid determination of 1-deoxynojirimycin in mulberry leaves. Kimura T; Nakagawa K; Saito Y; Yamagishi K; Suzuki M; Yamaki K; Shinmoto H; Miyazawa T Biofactors; 2004; 22(1-4):341-5. PubMed ID: 15630308 [TBL] [Abstract][Full Text] [Related]
16. Determination of 1-Deoxynojirimycin by a developed and validated HPLC-FLD method and assessment of In-vitro antioxidant, α-Amylase and α-Glucosidase inhibitory activity in mulberry varieties from Turkey. Eruygur N; Dural E Phytomedicine; 2019 Feb; 53():234-242. PubMed ID: 30668403 [TBL] [Abstract][Full Text] [Related]
17. Determination of 1-deoxynojirimycin in mulberry leaves using hydrophilic interaction chromatography with evaporative light scattering detection. Kimura T; Nakagawa K; Saito Y; Yamagishi K; Suzuki M; Yamaki K; Shinmoto H; Miyazawa T J Agric Food Chem; 2004 Mar; 52(6):1415-8. PubMed ID: 15030188 [TBL] [Abstract][Full Text] [Related]
18. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. Dong YS; Yu N; Li X; Zhang B; Xing Y; Zhuang C; Xiu ZL J Agric Food Chem; 2020 Aug; 68(33):8774-8787. PubMed ID: 32806121 [TBL] [Abstract][Full Text] [Related]
20. Validation of an ion trap tandem mass spectrometric analysis of mulberry 1-deoxynojirimycin in human plasma: application to pharmacokinetic studies. Nakagawa K; Kubota H; Tsuzuki T; Kariya J; Kimura T; Oikawa S; Miyazawa T Biosci Biotechnol Biochem; 2008 Aug; 72(8):2210-3. PubMed ID: 18685194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]