These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3928941)

  • 1. [Metronidazole-inactivating activity of cell-free extracts of Streptococcus faecalis].
    Narikawa S; Harasawa I; Nakamura M
    Nihon Saikingaku Zasshi; 1985 Mar; 40(2):501-9. PubMed ID: 3928941
    [No Abstract]   [Full Text] [Related]  

  • 2. Inactivation of metronidazole by Enterococcus faecalis.
    Nagy E; Földes J
    J Antimicrob Chemother; 1991 Jan; 27(1):63-70. PubMed ID: 1904851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate non-specificity of Streptococcus faecalis azoreductase.
    Gingell R
    Xenobiotica; 1973 Mar; 3(3):165-9. PubMed ID: 4199682
    [No Abstract]   [Full Text] [Related]  

  • 4. Fumarate reductase activity of Streptococcus faecalis.
    Aue BJ; Deiel RH
    J Bacteriol; 1967 Jun; 93(6):1770-6. PubMed ID: 4960892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of metronidazole susceptibility factors in obligate anaerobes.
    Narikawa S
    J Antimicrob Chemother; 1986 Nov; 18(5):565-74. PubMed ID: 3804881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of metronidazole by aerobic organisms.
    Edwards DI; Thompson EJ; Tomusange J; Shanson D
    J Antimicrob Chemother; 1979 May; 5(3):315-6. PubMed ID: 113378
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanism of metronidazole-resistance by isolates of nitroreductase-producing Enterococcus gallinarum and Enterococcus casseliflavus from the human intestinal tract.
    Rafii F; Wynne R; Heinze TM; Paine DD
    FEMS Microbiol Lett; 2003 Aug; 225(2):195-200. PubMed ID: 12951241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of aminoglycoside antibiotics by clinical isolates of Streptococcus faecalis.
    Kono M; Hamashima H; O'Hara K
    J Antibiot (Tokyo); 1981 Feb; 34(2):224-30. PubMed ID: 6271718
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidation of branched chain -ketoacids in Streptococcus faecalis and it's dependence on lipoic acid.
    Rüdiger HW; Langenbeck U; Goedde HW
    Hoppe Seylers Z Physiol Chem; 1972 Jun; 353(6):875-82. PubMed ID: 4626441
    [No Abstract]   [Full Text] [Related]  

  • 10. Ethanol utilization by Steptococcus faecalis.
    Kamihara T
    Arch Biochem Biophys; 1969 Aug; 133(1):137-43. PubMed ID: 4980386
    [No Abstract]   [Full Text] [Related]  

  • 11. Folate coenzymes in amethopterin-sensitive and -resistant strains of Streptococcus faecalis. Enzymatic formation and metabolic function.
    Albrecht AM; Pearce FK; Hutchison DJ
    J Biol Chem; 1966 Mar; 241(5):1036-42. PubMed ID: 4956661
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms of azo reduction by Streptococcus faecalis. I. Optimization of assay conditions.
    Walker R; Gingell R; Murrells DF
    Xenobiotica; 1971 May; 1(3):221-9. PubMed ID: 4403481
    [No Abstract]   [Full Text] [Related]  

  • 13. In vitro activity of daptomycin-metronidazole combinations against mixed bacterial cultures: reduced activity of metronidazole against Bacteroides species in the presence of Enterococcus faecalis.
    Nagy E; Werner H; Heizmann W
    Eur J Clin Microbiol Infect Dis; 1990 Apr; 9(4):287-91. PubMed ID: 2161762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on lipoic acid uptake by bacteria. 3. Intracellular distribution of enzymes.
    Oh YK; Leach FR
    Can J Microbiol; 1969 Feb; 15(2):183-7. PubMed ID: 4303525
    [No Abstract]   [Full Text] [Related]  

  • 15. A sequence database analysis of 5-nitroimidazole reductase and related proteins to expand knowledge on enzymes responsible for metronidazole inactivation.
    Alauzet C; Aujoulat F; Lozniewski A; Marchandin H
    Anaerobe; 2019 Feb; 55():29-34. PubMed ID: 30315962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Streptococcus faecalis tyrosine decarboxylase].
    Pimenova EI
    Mikrobiol Zh; 1972; 34(3):310-5. PubMed ID: 4197400
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanisms of azo reduction by Streptococcus faecalis. II. The role of soluble flavins.
    Gingell R; Walker R
    Xenobiotica; 1971 May; 1(3):231-9. PubMed ID: 4341449
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GlNR2).
    Müller J; Schildknecht P; Müller N
    J Antimicrob Chemother; 2013 Aug; 68(8):1781-9. PubMed ID: 23580565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance mechanism of chloramphenicol in Streptococcus haemolyticus, Streptococcus pneumoniae and Streptococcus faecalis.
    Miyamura S; Ochiai H; Nitahara Y; Nakagawa Y; Terao M
    Microbiol Immunol; 1977; 21(2):69-76. PubMed ID: 16197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var. zymogenes grown in the presence of haematin.
    Pritchard GG; Wimpenny JW
    J Gen Microbiol; 1978 Jan; 104(1):15-22. PubMed ID: 415116
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.