These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 39290396)
1. Deep learning infused SIRVD model for COVID-19 prediction: XGBoost-SIRVD-LSTM approach. Alkhalefah H; Preethi D; Khare N; Abidi MH; Umer U Front Med (Lausanne); 2024; 11():1427239. PubMed ID: 39290396 [TBL] [Abstract][Full Text] [Related]
2. SIRVD-DL: A COVID-19 deep learning prediction model based on time-dependent SIRVD. Liao Z; Lan P; Fan X; Kelly B; Innes A; Liao Z Comput Biol Med; 2021 Nov; 138():104868. PubMed ID: 34563855 [TBL] [Abstract][Full Text] [Related]
3. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854 [TBL] [Abstract][Full Text] [Related]
4. Forecasting and analyzing influenza activity in Hebei Province, China, using a CNN-LSTM hybrid model. Li G; Li Y; Han G; Jiang C; Geng M; Guo N; Wu W; Liu S; Xing Z; Han X; Li Q BMC Public Health; 2024 Aug; 24(1):2171. PubMed ID: 39135162 [TBL] [Abstract][Full Text] [Related]
5. Multi-step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model enhanced by Boruta-XGBoost feature selection algorithm. Karbasi M; Ali M; Bateni SM; Jun C; Jamei M; Farooque AA; Yaseen ZM Sci Rep; 2024 Jul; 14(1):15051. PubMed ID: 38951605 [TBL] [Abstract][Full Text] [Related]
6. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
7. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
8. Temporal deep learning architecture for prediction of COVID-19 cases in India. Verma H; Mandal S; Gupta A Expert Syst Appl; 2022 Jun; 195():116611. PubMed ID: 35153389 [TBL] [Abstract][Full Text] [Related]
9. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Shahid F; Zameer A; Muneeb M Chaos Solitons Fractals; 2020 Nov; 140():110212. PubMed ID: 32839642 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the number of COVID-19 confirmed cases based on K-means-LSTM. Vadyala SR; Betgeri SN; Sherer EA; Amritphale A Array (N Y); 2021 Sep; 11():100085. PubMed ID: 35083430 [TBL] [Abstract][Full Text] [Related]
11. Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach. Gopukumar D; Ghoshal A; Zhao H JMIR Med Inform; 2022 Aug; 10(8):e37578. PubMed ID: 35896038 [TBL] [Abstract][Full Text] [Related]
12. CNN-LSTM deep learning based forecasting model for COVID-19 infection cases in Nigeria, South Africa and Botswana. Muhammad LJ; Haruna AA; Sharif US; Mohammed MB Health Technol (Berl); 2022; 12(6):1259-1276. PubMed ID: 36406187 [TBL] [Abstract][Full Text] [Related]
13. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms. Luo J; Zhang Z; Fu Y; Rao F Results Phys; 2021 Aug; 27():104462. PubMed ID: 34178594 [TBL] [Abstract][Full Text] [Related]
14. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs. Yu W; Wang X; Jiang X; Zhao R; Zhao S Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396 [TBL] [Abstract][Full Text] [Related]
15. Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach. Zhou L; Zhao C; Liu N; Yao X; Cheng Z Eng Appl Artif Intell; 2023 Jun; 122():106157. PubMed ID: 36968247 [TBL] [Abstract][Full Text] [Related]
16. A hybrid XGBoost-ISSA-LSTM model for accurate short-term and long-term dissolved oxygen prediction in ponds. Wu Y; Sun L; Sun X; Wang B Environ Sci Pollut Res Int; 2022 Mar; 29(12):18142-18159. PubMed ID: 34686955 [TBL] [Abstract][Full Text] [Related]
17. Prediction of hepatitis E using machine learning models. Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452 [TBL] [Abstract][Full Text] [Related]
18. Multivariate time series short term forecasting using cumulative data of coronavirus. Mishra S; Singh T; Kumar M; Satakshi Evol Syst (Berl); 2023 Jun; ():1-18. PubMed ID: 37359316 [TBL] [Abstract][Full Text] [Related]
19. COVID-19 in Iran: Forecasting Pandemic Using Deep Learning. Kafieh R; Arian R; Saeedizadeh N; Amini Z; Serej ND; Minaee S; Yadav SK; Vaezi A; Rezaei N; Haghjooy Javanmard S Comput Math Methods Med; 2021; 2021():6927985. PubMed ID: 33680071 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China. Li X; Zhang X Environ Sci Pollut Res Int; 2023 Nov; 30(55):117485-117502. PubMed ID: 37867169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]