These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 39290635)
1. Machine-learning-derived online prediction models of outcomes for patients with cholelithiasis-induced acute cholangitis: development and validation in two retrospective cohorts. Huang S; Zhou Y; Liang Y; Ye S; Zhu A; Li J; Bai X; Yue C; Feng Y EClinicalMedicine; 2024 Oct; 76():102820. PubMed ID: 39290635 [TBL] [Abstract][Full Text] [Related]
2. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation. Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147 [TBL] [Abstract][Full Text] [Related]
3. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
4. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms. Wang Y; Sun X; Lu J; Zhong L; Yang Z Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811 [TBL] [Abstract][Full Text] [Related]
5. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning. Huang J; Liu X; Jin W Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817 [TBL] [Abstract][Full Text] [Related]
6. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774 [TBL] [Abstract][Full Text] [Related]
7. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
8. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU. Xie W; Li Y; Meng X; Zhao M Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related]
10. [Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis]. Gao X; Lin J; Wu A; Gu H; Liu X; Yin M; Zhou Z; Zhang R; Xu C; Zhu J Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Apr; 35(4):421-426. PubMed ID: 37308200 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury. Neyra JA; Ortiz-Soriano V; Liu LJ; Smith TD; Li X; Xie D; Adams-Huet B; Moe OW; Toto RD; Chen J Am J Kidney Dis; 2023 Jan; 81(1):36-47. PubMed ID: 35868537 [TBL] [Abstract][Full Text] [Related]
12. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
13. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
14. Development of a machine learning-based prediction model for sepsis-associated delirium in the intensive care unit. Zhang Y; Hu J; Hua T; Zhang J; Zhang Z; Yang M Sci Rep; 2023 Aug; 13(1):12697. PubMed ID: 37542106 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study. Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200 [TBL] [Abstract][Full Text] [Related]
16. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
17. A Machine Learning-Based Algorithm for the Prediction of Intensive Care Unit Delirium (PRIDE): Retrospective Study. Hur S; Ko RE; Yoo J; Ha J; Cha WC; Chung CR JMIR Med Inform; 2021 Jul; 9(7):e23401. PubMed ID: 34309567 [TBL] [Abstract][Full Text] [Related]
18. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403 [TBL] [Abstract][Full Text] [Related]
20. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]