These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 39290670)
1. Multi-omics analysis reveals flavor differences in Xinjiang brown beef with varying intramuscular fat contents. Ma Z; Wang X; Chen L; Yuan L; Cui F; Zhao Z; Yan X Food Chem (Oxf); 2024 Dec; 9():100220. PubMed ID: 39290670 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic analysis of different intramuscular fat contents on the flavor of the longissimus dorsi tissues from Guangling donkey. Li W; LiLi ; Wang X Genomics; 2024 Sep; 116(5):110905. PubMed ID: 39084475 [TBL] [Abstract][Full Text] [Related]
3. Effect of intramuscular fat content on the sensory characteristics and dynamic flavor attributes of Japanese black cattle beef. Hirai S; Kawai A; Mizuno Y; Sasaki S; Iida F Anim Sci J; 2023; 94(1):e13841. PubMed ID: 37259625 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive Analysis of Transcriptome and Metabolome Reveals Regulatory Mechanism of Intramuscular Fat Content in Beef Cattle. Yu H; Yu S; Guo J; Wang J; Mei C; Abbas Raza SH; Cheng G; Zan L J Agric Food Chem; 2024 Feb; 72(6):2911-2924. PubMed ID: 38303491 [TBL] [Abstract][Full Text] [Related]
5. Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef. Frank D; Kaczmarska K; Paterson J; Piyasiri U; Warner R Meat Sci; 2017 Nov; 133():61-68. PubMed ID: 28644988 [TBL] [Abstract][Full Text] [Related]
6. Quality Properties and Flavor-Related Components of Beef Hoa VB; Kim DG; Song DH; Ko JH; Kim HW; Bae IS; Kim YS; Cho SH Food Sci Anim Resour; 2024 Jul; 44(4):832-848. PubMed ID: 38974728 [TBL] [Abstract][Full Text] [Related]
7. Physico-chemical and sensory characteristics of young dairy bull beef derived from two breed types across five production systems employing two first season feeding regimes. Nian Y; Allen P; Prendiville R; Kerry JP J Sci Food Agric; 2018 Mar; 98(5):1914-1926. PubMed ID: 28906556 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive characterization of the differences in metabolites, lipids, and volatile flavor compounds between Ningxiang and Berkshire pigs using multi-omics techniques. Wang Q; Gao H; Fu Y; Chen Y; Song G; Jin Z; Zhang Y; Yin J; Yin Y; Xu K Food Chem; 2024 Nov; 457():139807. PubMed ID: 38964207 [TBL] [Abstract][Full Text] [Related]
9. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. Ramayo-Caldas Y; Fortes MR; Hudson NJ; Porto-Neto LR; Bolormaa S; Barendse W; Kelly M; Moore SS; Goddard ME; Lehnert SA; Reverter A J Anim Sci; 2014 Jul; 92(7):2832-45. PubMed ID: 24778332 [TBL] [Abstract][Full Text] [Related]
10. Beef-on-dairy: Meat quality of veal and prediction of intramuscular fat using the Q-FOM™ Beef camera at the 5th-6th thoracic vertebra. Drachmann FF; Christensen M; Esberg J; Lauridsen T; Fogh A; Young JF; Therkildsen M Meat Sci; 2024 Jul; 213():109503. PubMed ID: 38579510 [TBL] [Abstract][Full Text] [Related]
11. Sequencing and characterization of miRNAs and mRNAs from the longissimus dorsi of Xinjiang brown cattle and Kazakh cattle. Li N; Yu QL; Yan XM; Li HB; Zhang Y Gene; 2020 May; 741():144537. PubMed ID: 32156528 [TBL] [Abstract][Full Text] [Related]
12. Sensory and Flavor Chemistry Characteristics of Australian Beef: Influence of Intramuscular Fat, Feed, and Breed. Frank D; Ball A; Hughes J; Krishnamurthy R; Piyasiri U; Stark J; Watkins P; Warner R J Agric Food Chem; 2016 Jun; 64(21):4299-311. PubMed ID: 27118482 [TBL] [Abstract][Full Text] [Related]
13. Integrated multi-omics analysis reveals variation in intramuscular fat among muscle locations of Qinchuan cattle. Yu H; Wang J; Zhang K; Cheng G; Mei C; Zan L BMC Genomics; 2023 Jul; 24(1):367. PubMed ID: 37391702 [TBL] [Abstract][Full Text] [Related]
15. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. Park SJ; Beak SH; Jung DJS; Kim SY; Jeong IH; Piao MY; Kang HJ; Fassah DM; Na SW; Yoo SP; Baik M Asian-Australas J Anim Sci; 2018 Jul; 31(7):1043-1061. PubMed ID: 29879830 [TBL] [Abstract][Full Text] [Related]
16. AMP-activated protein kinase is negatively associated with intramuscular fat content in longissimus dorsi muscle of beef cattle. Underwood KR; Means WJ; Zhu MJ; Ford SP; Hess BW; Du M Meat Sci; 2008 Jun; 79(2):394-402. PubMed ID: 22062768 [TBL] [Abstract][Full Text] [Related]
17. Multi-Omics Analysis of Transcriptomic and Metabolomics Profiles Reveal the Molecular Regulatory Network of Marbling in Early Castrated Holstein Steers. Sun F; Piao M; Zhang X; Zhang S; Wei Z; Liu L; Bu Y; Xu S; Zhao X; Meng X; Yue M Animals (Basel); 2022 Dec; 12(23):. PubMed ID: 36496924 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound-induced modifications of beef flavor characteristics during postmortem aging. Fang Y; Zhang J; Ma C; Xing L; Wang W; Zhang W Ultrason Sonochem; 2024 Aug; 108():106979. PubMed ID: 38972094 [TBL] [Abstract][Full Text] [Related]
19. Assessment of muscle Longissimus thoracis et lumborum marbling by image analysis and relationships between meat quality parameters. Giaretta E; Mordenti AL; Canestrari G; Brogna N; Palmonari A; Formigoni A PLoS One; 2018; 13(8):e0202535. PubMed ID: 30133495 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Lipids and Volatile Compounds in Dezhou Donkey Meat with High and Low Intramuscular Fat Content. Ma Q; Kou X; Yang Y; Yue Y; Xing W; Feng X; Liu G; Wang C; Li Y Foods; 2023 Aug; 12(17):. PubMed ID: 37685202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]